精英家教網 > 初中數學 > 題目詳情
abcd是一個四位的自然數,已知abcd-abc-ab-a=1995,試確定這個四位數abcd?
【答案】分析:首先將abcd-abc-ab-a=1995進行化簡,然后對a、b、c、d進行討論,排除無關的值,進而確定這個四位數abcd.
解答:解:將這個式子化簡 abcd-abc-ab-a=1995,
即889a+89b+9c+d=1995,
∵889×1和889×2均小于1995,
即a可以取1或2,
當a=1時,89b+9c+d=1995-889=1106,
而此時,若b,c,d均取最大值9 也就是89×9+9×9+9=891<1106
∴a不能取1,
則a=2 那么 89b+9c+d=1995-889×2=217,
∴b也可以取1或2(因為89×1和89×2均小于217),
可是當b取1時,9c+d=128 若b,c均取9也才9×9+9=90<128,
∴b取2時,那么9c+d=39,
∴c可以取1,2,3,4,
∵d最大值為9,
∴9c最小取30 但是c是自然數,
∴c=4 故d=3,
∴abcd=2243.
點評:本題主要考查整數的十進制表示法,進行討論排除無關緊要的值是解答本題的關鍵,此題難度較大.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

.
abcd
表示一個四位數,且
.
ab
=
.
dc
,如1331,2552,則
.
abcd
稱為四位對稱數,將這樣的四位對稱數由小到大排列起來,第12個四位對稱數是(  )
A、2442B、2112
C、2332D、2222

查看答案和解析>>

科目:初中數學 來源: 題型:

13、abcd是一個四位的自然數,已知abcd-abc-ab-a=1995,試確定這個四位數abcd?

查看答案和解析>>

科目:初中數學 來源: 題型:

.
abc
是一個三位的自然數,已知
.
abc
-
.
ab
-a=195
,這個三位數是218;聰明的小亮在解決這種問題時,采取列成連減豎式的方法(見圖)確定要求的自然數,請你仿照小亮的作法,解決這種問題.如果
.
abcd
是一個四位的自然數,且
.
abcd
-
.
abc
-
.
ab
-a=2993
,那么,這個四位數是
3365
3365

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

abcd是一個四位的自然數,已知abcd-abc-ab-a=1995,試確定這個四位數abcd?

查看答案和解析>>

同步練習冊答案