如圖,半圓的直徑AB=2,點C從點A向點B沿著半圓運動,速度為每秒數(shù)學公式,運動時間為t(秒),D是弧BC的中點,連接AD,BC相交于點E,連接BD.
(1)如果OC∥BD,求t的值及數(shù)學公式的值;
(2)當t=3時,求數(shù)學公式的值.

解:(1)∵OC∥DB,OB=OC,
∴∠DBC=∠C=∠CBA,
∴弧DC=弧AC,
又∵點D平分弧BC,
∴弧DC=弧AC=弧BD,
∴∠DBC=∠C=∠CBA=30°,
∴弧AC=,
∴t=π÷=2.
∵在Rt△ABD中,∠D=90°,AB=2,
∴DB=1,AD=
∵在Rt△BDE中,∠D=90°,BD=1,∠DBE=30°,
∴tan30°=,
∴DE=,
∴AE=,
=;

(2)解:過點E作EF⊥AB于點F,
∵當t=3時,弧AC=,∠ABC=45°,
∵EF⊥AB,
∴∠EFB=90°,
∴∠BEF=45°=∠CBA=∠CAB,
∵∠C=90°,
∴AC=BC=,BF=EF=CE=2-,EB=BF=2-2,
∴AE2=+=8-4
∵AB為直徑,
∴∠C=∠D=90°,
∵∠AEC=∠BED,
∴△ACE∽△BDE,
=
∴DB=
===
分析:(1)求出∠DBC=∠C=∠CBA=30°,求出弧AC長,即可求出t,求出DB、AD、DE,AE,代入即可求出答案;
(2)過E作EF⊥AB于F,求出AC、BC,求出BF、EF,求出AE,證△ACE∽△BDE,得出=,推出DB=,代入求出即可.
點評:本題考查了相似三角形的性質和判定,平行線性質,含30度角的直角三角形,勾股定理的應用,主要考查學生運用定理進行推理的能力,題目綜合性比較強,有一定的難度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,半圓的直徑AB=10,P為AB上一點,點C,D為半圓的三等分點,則陰影部分的面積等于
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,半圓的直徑AB=10,P為圓心,點C在半圓上,BC=6.
(1)求弦AC的長;
(2)若PE⊥AB交AC于點E,求PE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•新疆)如圖,半圓的直徑AB=3,點C在半圓上,點E在AC上,且AE=BC,EF⊥AB于點F.若設BC=x,EF=y,則y關于x的函數(shù)關系式為y=
x2
3
x2
3
.(0<x<3).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,半圓的直徑AB=10,點C在半圓上,BC=6.
(1)求弦AC的長;
(2)把△BCE沿BE折疊,使點C與直徑AB上的P點重合,連結PC.求PE,PC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,半圓的直徑AB=10.弦AC=6,把AC沿直線AD對折恰與AB重合,點C落在C′處,則AD的長為( 。

查看答案和解析>>

同步練習冊答案