已知實數(shù)a、b、c滿足a-b+c=0,那么關(guān)于x的方程ax2+bx+c=0一定有根( 。
A、x=1B、x=-1C、x=±1D、都不對
分析:由a-b+c=0得b=a+c代入方程ax2+bx+c=0中,可得方程的一個根是-1.
解答:解:∵a-b+c=0,
∴b=a+c,①
把①代入方程ax2+bx+c=0中,
ax2+(a+c)x+c=0,
ax2+ax+cx+c=0,
ax(x+1)+c(x+1)=0,
(x+1)(ax+c)=0,
∴x1=-1,x2=-
c
a

故本題選B.
點評:本題考查的是一元二次方程的根,由題目中所給條件代入方程可以求出方程的兩個根,其中有一個準(zhǔn)確的根x=-1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知a,b,c為實數(shù),且滿足下式:a2+b2+c2=1,①,a(
1
b
+
1
c
)+b(
1
c
+
1
a
)+c(
1
a
+
1
b
)=-3
;②求a+b+c的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•菏澤)(1)已知m是方程x2-x-2=0的一個實數(shù)根,求代數(shù)式(m2-m)(m-
2
m
+1)
的值.
(2)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=-x的圖象與反比例函數(shù)y=
k
x
的圖象交于A、B兩點.
①根據(jù)圖象求k的值;
②點P在y軸上,且滿足以點A、B、P為頂點的三角形是直角三角形,試寫出點P所有可能的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分為6分)已知關(guān)于x的方程有兩個不相等的實數(shù)根x1,x2,求k的取值范圍.

解答過程:根據(jù)題意,得

      =

=>0

k

所以當(dāng)k時,方程有兩個不相等的實數(shù)根.

當(dāng)你讀了上面的解答過程后,請判斷是否有錯誤?如果有,請指出錯誤之處,并寫出正確的答案.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知m是方程x2﹣x﹣2=0的一個實數(shù)根,求代數(shù)式的值.

(2)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣x的圖象與反比例函數(shù)的圖象交于A、B兩點.

①根據(jù)圖象求k的值;

②點P在y軸上,且滿足以點A、B、P為頂點的三角形是直角三角形,試寫出點P所有可能的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年山東省菏澤市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(1)已知m是方程x2-x-2=0的一個實數(shù)根,求代數(shù)式的值.
(2)如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=-x的圖象與反比例函數(shù)的圖象交于A、B兩點.
①根據(jù)圖象求k的值;
②點P在y軸上,且滿足以點A、B、P為頂點的三角形是直角三角形,試寫出點P所有可能的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案