從甲、乙兩題中選做一題.如果兩題都做,只以甲題計分.
題甲:若關(guān)于x一元二次方程x2-2(2-k)x+k2+12=0有實數(shù)根a,β.
(1)求實數(shù)k的取值范圍;
(2)設(shè),求t的最小值.
題乙:如圖所示,在矩形ABCD中,P是BC邊上一點(diǎn),連接DP并延長,交AB的延長線于點(diǎn)Q.
(1)若=,求的值;
(2)若點(diǎn)P為BC邊上的任意一點(diǎn),求證:-=.
我選做的是______題.

【答案】分析:對甲:(1)由于一元二次方程存在兩實根,令△≥0求得k的取值范圍;
(2)將α+β?lián)Q為k的表達(dá)式,根據(jù)k的取值范圍得出t的取值范圍,求得最小值.
解答:題甲
解:(1)∵一元二次方程x2-2(2-k)x+k2+12=0有實數(shù)根a,β,
∴△≥0,
即4(2-k)2-4(k2+12)≥0,
得k≤-2.
(2)由根與系數(shù)的關(guān)系得:a+β=-[-2(2-k)]=4-2k,
,
∵k≤-2,

,
即t的最小值為-4.

題乙:
(1)解:∵AB∥CD,∴==,即CD=3BQ,
===;
(2)證明:四邊形ABCD是矩形
∵AB=CD,AB∥DC
∴△DPC∽△QPB
=
-=-=1+-=1
-=1.
點(diǎn)評:本題考查了一元二次方程根的判定,另要掌握兩根之和、兩根之積與系數(shù)的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)從甲、乙兩題中選做一題即可.如果兩題都做,只以甲題計分.
題甲:如圖,反比例函數(shù)y=
kx
的圖象與一次函數(shù)y=mx+b的圖象交于A(1,3),B(n,-1)兩點(diǎn).
(1)求反比例函數(shù)與一次函數(shù)的解析式;
(2)根據(jù)圖象回答:當(dāng)x取何值時,反比例函數(shù)的值大于一次函數(shù)的值.

題乙:如圖,在矩形ABCD中,AB=4,AD=10.直角尺的直角頂點(diǎn)P在AD上滑動時(點(diǎn)P與A,D不重合),一直角邊經(jīng)過點(diǎn)C,另一直角邊AB交于點(diǎn)E.我們知道,結(jié)論“Rt△AEP∽Rt△DPC”成立.
(1)當(dāng)∠CPD=30°時,求AE的長;
(2)是否存在這樣的點(diǎn)P,使△DPC的周長等于△AEP周長的2倍?若存在,求出DP的長;若不存在,請說精英家教網(wǎng)明理由.
我選做的是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

從甲、乙兩題中選做一題.如果兩題都做,只以甲題計分.
題甲:若關(guān)于x一元二次方程x2-2(2-k)x+k2+12=0有實數(shù)根a,β.
(1)求實數(shù)k的取值范圍;
(2)設(shè)t=
a+β
k
,求t的最小值.
題乙:如圖所示,在矩形ABCD中,P是BC邊上一點(diǎn),連接DP并延長,交AB的延長線精英家教網(wǎng)于點(diǎn)Q.
(1)若
BP
PC
=
1
3
,求
AB
AQ
的值;
(2)若點(diǎn)P為BC邊上的任意一點(diǎn),求證:
BC
BP
-
AB
BQ
=.
我選做的是
 
題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計分.
甲:小東從A地出發(fā)以某一速度向B地走去,同時小明從B地出發(fā)以另-速度向A地而行.如圖所示,圖中精英家教網(wǎng)的線段y1、y2分別表示小東、小明離B地的距離(千米)與所用時間(小時)的關(guān)系.
(1)試用文字說明:交點(diǎn)P所表示的實際意義;
(2)試求y1、y2的解析式;
(3)試求出A、B兩地之間的距離.

乙:如圖,?ABCD中,E是BA的延長線上一點(diǎn),CE與AD交于點(diǎn)F.
(1)求證:△AEF∽△DCF;精英家教網(wǎng)
(2)若AB=2AE,△AEF的面積為2
2
,求?ABCD的面積.

我選做的是
 
題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)本題為選做題,從甲、乙兩題中選做一題即可,如果兩題都做,只以甲題計分.
選做題:甲:已知關(guān)于x的一元二次方程x2-(2m+1)x+m2+m-2=0
(1)求證:不論m取何值,方程總有兩個不相等的實數(shù)根;
(2)若方程的兩個實數(shù)根x1、x2滿足
1
x1
+
1
x2
=1+
1
m+2
,求m的值.
乙:如圖,點(diǎn)D是⊙O的直徑CA延長線上一點(diǎn),點(diǎn)B在⊙O上,且AB=AD=AO.
(1)求證:BD是⊙O的切線.
(2)若點(diǎn)E是劣弧BC上一點(diǎn),AE與BC相交于點(diǎn)F,且△BEF的面積為8,cos∠BFA=
2
3
,求△ACF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•峨眉山市二模)選做題:從甲、乙兩題中選做一題,如果兩題都做,只以甲題計分.
題甲:如圖1,正比例函數(shù)y=-
1
2
x
的圖象與反比例函數(shù)y=
k
x
(k≠0)
在第二象限的圖象交于A點(diǎn),過A點(diǎn)作x軸的垂線,垂足為M,已知△OAM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)如果B為反比例函數(shù)圖象上的點(diǎn),且B點(diǎn)的橫坐標(biāo)為-1,在x軸上一點(diǎn)P,使PA+PB最小,求P點(diǎn)的坐標(biāo).
題乙:如圖2,已知AB、AC分別為⊙O的直徑和弦,D為BC的中點(diǎn),DE⊥AC于E,DE=6,AC=16.
(1)求證:DE與⊙O相切;
(2)求直徑AB的長.

查看答案和解析>>

同步練習(xí)冊答案