(2010•石景山區(qū)二模)如圖,在等腰梯形ABCD中,AD∥BC,∠ADB=30°,∠DCB=60°,則圖中的等腰三角形有( )

A.1個
B.2個
C.3個
D.4個
【答案】分析:由AD∥BC,∠ADB=30°,可知∠CBD=∠ADB=30°,根據(jù)等腰梯形的性質(zhì)得∠ABC=∠DCB=60°,則∠BAD=∠ABC-∠CBD=30°,可證△ABD為等腰三角形,同理可證△ACD為等腰三角形,利用“AAS”證明△AOB≌△DOC,可證△AOD,△BOC也是等腰三角形.
解答:解:∵AD∥BC,∠ADB=30°,
∴∠CBD=∠ADB=30°,
∵ABCD為等腰梯形,
∴∠ABC=∠DCB=60°,則∠BAD=∠ABC-∠CBD=30°,
∴△ABD為等腰三角形,同理可證△ACD為等腰三角形,
∵∠ABO=∠DCO=30°,∠AOB=∠DOC,AB=CD,
∴△AOB≌△DOC,
∴AO=DO,BO=CO,
∴△AOD,△BOC也是等腰三角形.
等腰三角形共4個,故選D.
點評:本題考查了等腰三角形的性質(zhì).關(guān)鍵是根據(jù)已知條件,等腰三角形的性質(zhì)得出相等角,相等線段,全等三角形,再判斷等腰三角形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年北京市石景山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•石景山區(qū)二模)已知:如圖,拋物線y=ax2-5ax+b+與直線y=x+b交于點A(-3,0)、點B,與y軸交于點C.
(1)求拋物線與直線的解析式;
(2)在直線AB上方的拋物線上有一點D,使得△DAB的面積是8,求點D的坐標(biāo);
(3)若點P是直線x=1上一點,是否存在△PAB是等腰三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市石景山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•石景山區(qū)二模)已知關(guān)于x的一元二次方程x2-(m-1)x+m-3=0.
(1)求證:不論m取何值時,方程總有兩個不相等的實數(shù)根.
(2)若直線y=(m-1)x+3與函數(shù)y=x2+m的圖象C1的一個交點的橫坐標(biāo)為2,求關(guān)于x的一元二次方程x2-(m-1)x+m-3=0的解.
(3)在(2)的條件下,將拋物線y=x2-(m-1)x+m-3繞原點旋轉(zhuǎn)180°,得到圖象C2,點P為x軸上的一個動點,過點P作x軸的垂線,分別與圖象C1、C2交于M、N兩點,當(dāng)線段MN的長度最小時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市石景山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•石景山區(qū)二模)已知:△ABC在平面直角坐標(biāo)系中的位置如圖所示.
(1)將△ABC向右平移2個單位得到△A1B1C1,請直接寫出點B1的坐標(biāo):______;
(2)將△A1B1C1繞點B1逆時針旋轉(zhuǎn)90°得到△A2B2C2,求直線A2C2的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市石景山區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

(2010•石景山區(qū)一模)已知:如圖1,等邊△ABC為2,一邊在x上且A(1-,0),AC交y軸于點,過點E作EF∥AB交BC于點F.
(1)直接寫出點B、C的坐標(biāo);
(2)若直線y=kx-1(k≠0)將四邊形EABF的面積等分,求k的值;
(3)如圖2,過點A、B、C線與y軸交于點D,M為線段OB上的一個動點,過x軸上一點G(-2,0)作DM的垂線,垂足為H,直線GH交y軸于點N,當(dāng)M在線段OB上運動時,現(xiàn)給出兩個結(jié)論:①∠GNM=∠CDM;②∠MGN=∠DCM,其中只有一個是正確的,請你判斷哪個結(jié)論正確,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年北京市石景山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•石景山區(qū)二模)(1)已知:如圖1,Rt△ABC中,∠ACB=90°,∠BAC=60°,CD平分∠ACB,點E為AB中點,PE⊥AB交CD的延長線于P,猜想:∠PAC+∠PBC=______°(直接寫出結(jié)論,不需證明).
(2)已知:如圖2,Rt△ABC中,∠ACB=90°,∠BAC≠45°,CD平分∠ACB,點E為AB中點,PE⊥AB交CD的延長線于P,(1)中結(jié)論是否成立,若成立,請證明;若不成立請說明理由.

查看答案和解析>>

同步練習(xí)冊答案