【題目】如圖,已知直線與⊙O相離,OA⊥于點A,交⊙O于點P,點B是⊙O上一點,連接BP并延長,交直線于點C,使得AB=AC.
(1)求證:AB是⊙O的切線;
(2)若PC=2,OA=4,求⊙O的半徑.
【答案】(1)詳見解析;(2)1.
【解析】試題分析:(1)連結(jié)OB,如圖,由等腰三角形的性質(zhì)得∠1=∠2,∠4=∠5,由OA⊥AC得∠2+∠3=90°,加上∠3=∠4,易得∠5+∠1=90°,即∠OBA=90°,于是根據(jù)切線的判定定理可得AB是⊙O的切線;
(2)作OH⊥PB于H,如圖,根據(jù)垂徑定理得到BH=PH,設(shè)⊙O的半徑為r,則PA=OA-OP=4-r,根據(jù)勾股定理得到AC,AB,然后根據(jù)相似三角形的性質(zhì)即可得到結(jié)論.
(1)證明:連結(jié)OB,
∵AB=AC,
∴∠1=∠2,
∵OA⊥AC,
∴∠2+∠3=90°,
∵OB=OP,
∴∠4=∠5,而∠3=∠4,
∴∠5+∠2=90°,
∴∠5+∠1=90°,即∠OBA=90°,
∴OB⊥AB,
∴AB是⊙O的切線;
(2)解:設(shè)⊙O的半徑為r,則PA=OA﹣OP=4﹣r,
在Rt△PAC中,AC2=PC2﹣PA2=(2)2﹣(4﹣r)2,
在Rt△OAB中,AB2=OA2﹣OB2=42﹣r2,而AB=AC,
∴(2 2﹣(4﹣r)2=42﹣r2,
解得r=1,
即⊙O的半徑為1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】疫情期間福州一中初中部舉行了“宅家運動會”.該學(xué)校七、八年級各有300名學(xué)生參加了這次“宅家運動會”,現(xiàn)從七、八年級各隨機抽取20名學(xué)生宅家運動會的成績進行抽樣調(diào)查.
收集數(shù)據(jù)如下:
七年級: | 74 | 97 | 96 | 72 | 98 | 99 | 72 | 73 | 76 | 74 |
74 | 69 | 76 | 89 | 78 | 74 | 99 | 97 | 98 | 99 | |
八年級: | 76 | 88 | 96 | 89 | 78 | 94 | 89 | 94 | 95 | 50 |
89 | 68 | 65 | 89 | 77 | 86 | 89 | 88 | 92 | 91 |
整理數(shù)據(jù)如下:
七年級 | 0 | 1 | 10 | 1 | a |
八年級 | 1 | 2 | 3 | 8 | 6 |
分析數(shù)據(jù)如下:
年級 | 平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 |
七年級 | 84.2 | 77 | 74 | 138.56 |
八年級 | 84 | b | 89 | 129.7 |
根據(jù)以上信息,回答下列問題:
(1)___________,___________;
(2)你認(rèn)為哪個年級“宅家運動會”的總體成績較好,說明理由(至少從兩個不同的角度說明推斷的合理性)
(3)學(xué)校對“宅家運動會”成績不低于80分的學(xué)生頒發(fā)優(yōu)勝獎,請你估計學(xué)校七、八年級所有學(xué)生中獲得優(yōu)勝獎的大約有___________人.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC, AD是△ABC 底邊BC上的中線,P為AB上一點.
(1)在AD上找一點E,使得PE+EB的值最;
(2)若P為AB的中點,當(dāng)∠BPE= °時,△ABC是等邊三角形.(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】世界上大部分國家都使用攝氏溫度(),但美國、英國等國家的天氣預(yù)報仍然使用華氏溫度().兩種計量之間有如下對應(yīng):
攝氏溫度() | ||||||
華氏溫度() |
(1)上表反映了哪兩變量之間的關(guān)系?哪個是自變量?哪個是因變量?
(2)由上表可得:攝氏溫度()每提高度,華氏溫度()提高_____度.
(3)攝氏溫度度時華氏溫度為______度.
(4)華氏溫度度時攝氏溫度為_______度.
(5)華氏溫度的值與對應(yīng)的攝氏溫度的值有相等的可能嗎?如果有,求出這個值.如果沒有,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ΔABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,則∠DEF的度數(shù)是( 。
A.75°B.70°C.65°D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地震救援隊探測出某建筑物廢墟下方點C處有生命跡象,已知廢墟一側(cè)地面上兩探測點A,B相距3米,探測線與地面的夾角分別是30°和60°(如圖),試確定生命所在點C的深度.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,連接BD,且BD=CD,過點A作AM⊥BD于點M,過點D作DN⊥AB于點N,且DN=,在DB的延長線上取一點P,滿足∠ABD=∠MAP+∠PAB,則AP=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二孩子政策的落實引起了全社會的關(guān)注,某校學(xué)生數(shù)學(xué)興趣小組為了了解本校同學(xué)父母生育二孩子的態(tài)度,在學(xué)校抽取了部分同學(xué)對父母生育二孩子所持的態(tài)度進行了問卷調(diào)查,調(diào)查分別為非常贊同、贊同、無所謂、不贊同等四種態(tài)度,現(xiàn)將調(diào)查統(tǒng)計結(jié)果制成了如圖兩幅統(tǒng)計圖,請結(jié)合兩幅統(tǒng)計圖,回答下列問題:
(1)在這次問卷調(diào)查中一共抽取了__________名學(xué)生,a=________%;
(2)請補全條形統(tǒng)計圖;
(3)持“不贊同”態(tài)度的學(xué)生人數(shù)的百分比所占扇形的圓心角為__________度;
(4)若該校有3000名學(xué)生,請你估計該校學(xué)生對父母生育二孩子持“贊同”和“非常贊同”兩種態(tài)度的人數(shù)之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,對角線AC的垂直平分線EF交AC于O,分別交BC、AD于點E、F.
(1)求證:四邊形AECF是菱形;
(2)若AB=4,BC=8,求EC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com