如圖1,矩形ABCD中,AB=6,BC=8,點(diǎn)E、F分別是BC、CD邊上的點(diǎn),且AE⊥EF,BE=2,

(1)求證:AE=EF;

(2)延長(zhǎng)EF交矩形∠BCD的外角平分線CP于點(diǎn)P(圖2),試求AE與EP的數(shù)量關(guān)系;


(1)∵AE⊥EF,∴∠BEA+∠CEF=90°。

∵四邊形ABCD為矩形,∴∠B=∠C=90°。

∴∠BAE +∠BEA =90°!唷螧A E=∠CEF。

又∵AB=DC=6,BC=8,BE=2,∴AB=EC=6。

∴△ABE≌△ECF(ASA)。

∴AE=EF。

(2)如圖,在AB上取一點(diǎn)M,使BM=BE,連接ME。

∴AM=CE。∴∠BME=45°!唷螦ME=135°。

∵CP是外角平分線,∴∠DCP=45°!唷螮CP=135°。

∴∠AME=∠ECP。

由(1)知∠MA E=∠CEP,

∴△AME∽△ECP!。

∵AM=2,EC=3,∴。

∴AE與EP的數(shù)量關(guān)系是。

【考點(diǎn)】矩形的性質(zhì),全等三角形的判定和性質(zhì),外角平分線定義,相似三角形的判定和性質(zhì)。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:


如圖,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.點(diǎn)D、E、F分別是邊AB,BC,AC的中點(diǎn),連接DE,DF,動(dòng)點(diǎn)P,Q分別從點(diǎn)A、B同時(shí)出發(fā),運(yùn)動(dòng)速度均為1cm/s,點(diǎn)P沿AFD的方向運(yùn)動(dòng)到點(diǎn)D停止;點(diǎn)Q沿BC的方向運(yùn)動(dòng),當(dāng)點(diǎn)P停止運(yùn)動(dòng)時(shí),點(diǎn)Q也停止運(yùn)動(dòng).在運(yùn)動(dòng)過程中,過點(diǎn)Q作BC的垂線交AB于點(diǎn)M,以點(diǎn)P,M,Q為頂點(diǎn)作平行四邊形PMQN.設(shè)平行四邊形邊形PMQN與矩形FDEC重疊部分的面積為y(cm2)(這里規(guī)定線段是面積為0有幾何圖形),點(diǎn)P運(yùn)動(dòng)的時(shí)間為x(s)


(1)當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)F時(shí),CQ=          cm;
(2)在點(diǎn)P從點(diǎn)F運(yùn)動(dòng)到點(diǎn)D的過程中,某一時(shí)刻,點(diǎn)P落在MQ上,求此時(shí)BQ的長(zhǎng)度;
(3)當(dāng)點(diǎn)P在線段FD上運(yùn)動(dòng)時(shí),求y與x之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知拋物線y1=﹣2x2+2,直線y2=﹣2x+2,當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較大值記為M;若y1=y2,記M=y1=y2。例如:當(dāng)x=﹣1時(shí),y1=0,y2=4,y1<y2,此時(shí)M=4。下列判斷:

①當(dāng)x<0時(shí),y1>y2;

②當(dāng)x>0時(shí),x值越大,M值越;

③當(dāng)x≥0時(shí),使得M大于2的x值不存在;

④使得M=1的x值是。

其中正確的有【    】

  A.1個(gè)  B.2個(gè)  C.3個(gè)  D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 如圖,已知△ABC中,AB=AC,∠ADB=∠AEC,那么圖中有     對(duì)全等三角形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知△ABC,AB=AC=1,∠BAC=108°,點(diǎn)D在BC上,AD=BD,則AD的長(zhǎng)是

         ,cosB的值是         (結(jié)果保留根號(hào))。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,五邊形ABCDE中,AB⊥BC,AE∥CD,∠A=∠E=135°,AB=AE=2,DE=4,則五邊形ABCDE的面積等于     。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


如圖,已知⊙B與△ABD的邊AD相切于點(diǎn)C,AC=,⊙B的半徑為2,當(dāng)⊙A與⊙B相切時(shí),⊙A的半徑是【   】

      1      3      2或4        1或3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


已知A,B,C為⊙O上相鄰的三個(gè)六等分點(diǎn),點(diǎn)E在劣弧AC上(不與A,B,C重合),EF

為⊙O的直徑,將⊙O沿EF折疊,使點(diǎn)A與A′重合,點(diǎn)B與B′重合,連接EB′,EC,EA′。設(shè)EB′=b,EC=c,EA′=p。試探究b,c,p三者的數(shù)量關(guān)系。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:


 如圖,平面之間坐標(biāo)系中,Rt△ABC的∠ACB=90º,∠CAB=30º,直角邊BC在x軸正半軸上滑動(dòng),點(diǎn)C的坐標(biāo)為(t,0),直角邊AC=,經(jīng)過O,C兩點(diǎn)做拋物線(a為常數(shù),a>0),該拋物線與斜邊AB交于點(diǎn)E,直線OA:y2=kx(k為常數(shù),k>0)

(1)填空:用含t的代數(shù)式表示點(diǎn)A的坐標(biāo)及k的值:A       ,k=       ;

(2)隨著三角板的滑動(dòng),當(dāng)a=1時(shí):

①請(qǐng)你驗(yàn)證:拋物的頂點(diǎn)在函數(shù)的圖象上;

②當(dāng)三角板滑至點(diǎn)E為AB的中點(diǎn)時(shí),求t的值。

查看答案和解析>>

同步練習(xí)冊(cè)答案