(2006•巴中)如圖,在所示的直角坐標系中,P是第一象限的點,其坐標是(6,y),且OP與x軸的正半軸的夾角α的正切值是,求角α的正弦值.

【答案】分析:首先由點P向x軸引垂線,結(jié)合銳角三角函數(shù)值和點P的橫坐標,求得點P的縱坐標;
再根據(jù)勾股定理求得構(gòu)造的直角三角形的斜邊,從而求得該角的正弦值.
解答:解:作PC⊥x軸于C.
∵tanα=,OC=6
∴PC=8.
則OP=10.
則sinα=
點評:綜合運用了點的坐標、勾股定理以及銳角三角函數(shù)的概念.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

(2006•巴中)如圖,在平面直角坐標系中,以點0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點,過點B作⊙O′的切線,交y軸于點C,過點0′作x軸的垂線MN,垂足為D,一條拋物線(對稱軸與y軸平行)經(jīng)過A、B兩點,且頂點在直線BC上.
(1)求直線BC的解析式;
(2)求拋物線的解析式;
(3)設拋物線與y軸交于點P,在拋物線上是否存在一點Q,使四邊形DBPQ為平行四邊形?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

(2006•巴中)如圖,在平面直角坐標系中,以點0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點,過點B作⊙O′的切線,交y軸于點C,過點0′作x軸的垂線MN,垂足為D,一條拋物線(對稱軸與y軸平行)經(jīng)過A、B兩點,且頂點在直線BC上.
(1)求直線BC的解析式;
(2)求拋物線的解析式;
(3)設拋物線與y軸交于點P,在拋物線上是否存在一點Q,使四邊形DBPQ為平行四邊形?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2006年四川省巴中市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2006•巴中)如圖,在平面直角坐標系中,以點0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點,過點B作⊙O′的切線,交y軸于點C,過點0′作x軸的垂線MN,垂足為D,一條拋物線(對稱軸與y軸平行)經(jīng)過A、B兩點,且頂點在直線BC上.
(1)求直線BC的解析式;
(2)求拋物線的解析式;
(3)設拋物線與y軸交于點P,在拋物線上是否存在一點Q,使四邊形DBPQ為平行四邊形?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年山東省煙臺市中考數(shù)學試卷(解析版) 題型:解答題

(2006•巴中)如圖,在平面直角坐標系中,以點0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點,過點B作⊙O′的切線,交y軸于點C,過點0′作x軸的垂線MN,垂足為D,一條拋物線(對稱軸與y軸平行)經(jīng)過A、B兩點,且頂點在直線BC上.
(1)求直線BC的解析式;
(2)求拋物線的解析式;
(3)設拋物線與y軸交于點P,在拋物線上是否存在一點Q,使四邊形DBPQ為平行四邊形?若存在,請求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《四邊形》(09)(解析版) 題型:解答題

(2006•巴中)如圖,梯形ABCD中,AB∥DC,∠B=90°,E為BC上一點,且AE⊥ED.若BC=12,DC=7,BE:EC=1:2,求AB的長.

查看答案和解析>>

同步練習冊答案