如圖,在平面直角坐標(biāo)系中,兩個(gè)一次函數(shù)y=x,y=-2x+12的圖象相交于點(diǎn)A,動(dòng)點(diǎn)E從O點(diǎn)出發(fā),沿OA方向以每秒1個(gè)單位的速度運(yùn)動(dòng),作EF∥y軸與直線BC交于點(diǎn)F,以EF為一邊向x軸負(fù)方向作正方形EFMN,設(shè)正方形EFMN與△AOC的重疊部分的面積為S.
(1)求點(diǎn)A的坐標(biāo);
(2)求過(guò)A、B、O三點(diǎn)的拋物線的頂點(diǎn)P的坐標(biāo);
(3)當(dāng)點(diǎn)E在線段OA上運(yùn)動(dòng)時(shí),求出S與運(yùn)動(dòng)時(shí)間t(秒)的函數(shù)表達(dá)式;
(4)在(3)的條件下,t為何值時(shí),S有最大值,最大值是多少?此時(shí)(2)中的拋物線的頂點(diǎn)P是否在直線EF上,請(qǐng)說(shuō)明理由.

【答案】分析:(1)可聯(lián)立直線OA和AC的函數(shù)解析式組成方程組,即可求出A點(diǎn)的坐標(biāo).
(2)先根據(jù)直線BC的解析式求出B點(diǎn)的坐標(biāo),然后根據(jù)已知的A點(diǎn)和原點(diǎn)坐標(biāo),用待定系數(shù)法即可求出過(guò)A、B、O三點(diǎn)的拋物線的解析式.進(jìn)而可求出其頂點(diǎn)P的坐標(biāo).
(3)如果設(shè)FM與y軸交于R,EN與y軸交于Q,不難得出三角形OEQ為等腰直角三角形,那么本題可分二種情況進(jìn)行討論:
①當(dāng)EF>QE時(shí),那么重合部分的面積是個(gè)矩形的面積,以EF和QE為長(zhǎng)和寬.
②當(dāng)EF≤QE時(shí),那么重復(fù)部分就是正方形EFMN的面積.
根據(jù)這兩種情況可得出不同t的取值范圍內(nèi)的S,t的函數(shù)關(guān)系式.
(4)可根據(jù)(3)的函數(shù)得出S的最大值及對(duì)應(yīng)的t的值.然后根據(jù)t確定出E,F(xiàn)點(diǎn)的坐標(biāo),進(jìn)而可求出直線EF的解析式,由此可判斷出拋物線的頂點(diǎn)是否在直線EF上.
解答:解:(1)依題意得
解得
∴點(diǎn)A的坐標(biāo)為(4,4).

(2)直線y=-2x+12與x軸交點(diǎn)B的坐標(biāo)為(6,0).
設(shè)過(guò)A、B、O的拋物線的表達(dá)式為y=ax2+bx,
依題意得
解得
∴所求拋物線的表達(dá)式為y=-x2+3x.
y=-x2+3x=-(x-3)2+,
∴點(diǎn)P坐標(biāo)(3,).

(3)設(shè)直線MF、NE與y軸交于點(diǎn)R、Q,則△OQE是等腰直角三角形.
∵OE=1×t=t,
∴EQ=OQ=,
∴E(,).
∵EF∥y軸,
∴RF=,RO=-2×t+12=12-
∴EF=RQ=12--=12-t.
①當(dāng)EF>QE時(shí),即12-t>t,
解得t<3
∴當(dāng)0≤t<3時(shí),S=EF•QE=t(12-t)=-t2+6t.
②當(dāng)EF≤QE時(shí),即12-t≤
解得t≥3
∴當(dāng)3≤t<4時(shí),S=EF2=(12-t)2
(4)當(dāng)0≤t<3時(shí),S=-t2+6t=-(t-22+12.
∴當(dāng)t=2時(shí),S最大=12.
當(dāng)3≤t<4時(shí),S最大=(2=9.
∴當(dāng)t=2時(shí),S最大=12.
當(dāng)t=2時(shí),E(2,2),F(xiàn)(2,8),
∵P(3,),
∴點(diǎn)P不在直線EF上.
點(diǎn)評(píng):本題考查了二次函數(shù)解析式的確定、圖形的面積求法、函數(shù)圖象交點(diǎn)等知識(shí)及綜合應(yīng)用知識(shí)、解決問(wèn)題的能力.考查學(xué)生分類討論,數(shù)形結(jié)合的數(shù)學(xué)思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個(gè)動(dòng)點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個(gè)點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長(zhǎng)為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動(dòng)點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動(dòng),路徑為O→A→B→C,到達(dá)點(diǎn)C時(shí)停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時(shí),求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時(shí),請(qǐng)寫出點(diǎn)P的坐標(biāo)(不要求過(guò)程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊(cè)答案