設(shè)邊長為3的正方形的對(duì)角線長為a.下列關(guān)于a的四種說法:①a是無理數(shù);②a可以用數(shù)軸上的一個(gè)點(diǎn)來表示;③3<a<4;④a是18的算術(shù)平方根.其中,所有正確說法的序號(hào)是( )
A.①④
B.②③
C.①②④
D.①③④
【答案】分析:先利用勾股定理求出a=3,再根據(jù)無理數(shù)的定義判斷①;根據(jù)實(shí)數(shù)與數(shù)軸的關(guān)系判斷②;利用估算無理數(shù)大小的方法判斷③;利用算術(shù)平方根的定義判斷④.
解答:解:∵邊長為3的正方形的對(duì)角線長為a,
∴a===3
①a=3是無理數(shù),說法正確;
②a可以用數(shù)軸上的一個(gè)點(diǎn)來表示,說法正確;
③∵16<18<25,4<<5,即4<a<5,說法錯(cuò)誤;
④a是18的算術(shù)平方根,說法正確.
所以說法正確的有①②④.
故選C.
點(diǎn)評(píng):本題主要考查了勾股定理,實(shí)數(shù)中無理數(shù)的概念,算術(shù)平方根的概念,實(shí)數(shù)與數(shù)軸的關(guān)系,估算無理數(shù)大小,有一定的綜合性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)邊長為2a的正方形的中心A在直線l上,它的一組對(duì)邊垂直于直線l,半徑為r的⊙O的圓心O在直線l上運(yùn)動(dòng),點(diǎn)A、O間距離為d.
(1)如圖①,當(dāng)r<a時(shí),根據(jù)d與a、r之間關(guān)系,將⊙O與正方形的公共點(diǎn)個(gè)數(shù)填入下表:
d、a、r之間的關(guān)系 公共點(diǎn)的個(gè)數(shù)
 d>a+r  
 d=a+r  
 a-r<d<a+r  
 d=a-r  
 d<a-r  
所以,當(dāng)r<a時(shí),⊙O與正方形的公共點(diǎn)的個(gè)數(shù)可能有
 
個(gè);
(2)如圖②,當(dāng)r=a時(shí),根據(jù)d與a、r之間關(guān)系,將⊙O與正方形的公共點(diǎn)個(gè)數(shù)填入下表:
 d、a、r之間的關(guān)系 公共點(diǎn)的個(gè)數(shù) 
 d>a+r  
 d=a+r  
 a≤d<a+r  
 d<a  
精英家教網(wǎng)
所以,當(dāng)r=a時(shí),⊙O與正方形的公共點(diǎn)個(gè)數(shù)可能有
 
個(gè);
(3)如圖③,當(dāng)⊙O與正方形有5個(gè)公共點(diǎn)時(shí),試說明r=
5
4
a.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

請(qǐng)閱讀下列材料:
問題:現(xiàn)有5個(gè)邊長為1的正方形,排列形式如圖1,請(qǐng)把它們分割后拼接成一個(gè)新的正方形.
要求:畫出分割線并在正方形網(wǎng)格圖(圖中每個(gè)小正方形的邊長均為1)中用實(shí)線畫出拼接成的新正方形.
小東同學(xué)的做法是:設(shè)新正方形的邊長為x(x>0).依題意,割補(bǔ)前后圖形面積相等,有x2=5,解得x=
5
.由此可知新正方形的邊長等于兩個(gè)小正方形組成的矩形對(duì)角線的長.于是,畫出如圖2所示的分割線,拼出如圖3所示的新正方形.
精英家教網(wǎng)
請(qǐng)你參考小東同學(xué)的做法,解決如下問題:
(1)如圖4,是由邊長為1的5個(gè)小正方形組成,請(qǐng)你通過分割,把它拼成一個(gè)正方形(在圖4上畫出分割線,在圖4的右側(cè)畫出拼成的正方形簡(jiǎn)圖);
(2)如圖5,是由邊長分別為a和b的兩個(gè)正方形組成,請(qǐng)你通過分割,把它拼成一個(gè)正方形(在圖5上畫出分割線,在圖5的右側(cè)畫出拼成的正方形簡(jiǎn)圖).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第2章《二次函數(shù)》中考題集(26):2.3 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

現(xiàn)有邊長為180厘米的正方形鐵皮,準(zhǔn)備將它設(shè)計(jì)并制成一個(gè)開口的水槽,使水槽能通過的水的流量最大.
某校九年級(jí)(2)班數(shù)學(xué)興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對(duì)水槽的橫截面,進(jìn)行了如下探索:
(1)方案①:把它折成橫截面為矩形的水槽,如圖.
若∠ABC=90°,設(shè)BC=x厘米,該水槽的橫截面面積為y厘米2,請(qǐng)你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當(dāng)x取何值時(shí),y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽,如圖.
若∠ABC=1 20°,請(qǐng)你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大小.
(2)假如你是該興趣小組中的成員,請(qǐng)你再提供一種方案,使你所設(shè)計(jì)的水槽的橫截面面積更大.畫出你設(shè)計(jì)的草圖,標(biāo)上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第6章《二次函數(shù)》中考題集(27):6.4 二次函數(shù)的應(yīng)用(解析版) 題型:解答題

現(xiàn)有邊長為180厘米的正方形鐵皮,準(zhǔn)備將它設(shè)計(jì)并制成一個(gè)開口的水槽,使水槽能通過的水的流量最大.
某校九年級(jí)(2)班數(shù)學(xué)興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對(duì)水槽的橫截面,進(jìn)行了如下探索:
(1)方案①:把它折成橫截面為矩形的水槽,如圖.
若∠ABC=90°,設(shè)BC=x厘米,該水槽的橫截面面積為y厘米2,請(qǐng)你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當(dāng)x取何值時(shí),y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽,如圖.
若∠ABC=1 20°,請(qǐng)你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大小.
(2)假如你是該興趣小組中的成員,請(qǐng)你再提供一種方案,使你所設(shè)計(jì)的水槽的橫截面面積更大.畫出你設(shè)計(jì)的草圖,標(biāo)上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(24):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

現(xiàn)有邊長為180厘米的正方形鐵皮,準(zhǔn)備將它設(shè)計(jì)并制成一個(gè)開口的水槽,使水槽能通過的水的流量最大.
某校九年級(jí)(2)班數(shù)學(xué)興趣小組經(jīng)討論得出結(jié)論:在水流速度一定的情況下,水槽的橫截面面積越大,則通過水槽的水的流量越大.為此,他們對(duì)水槽的橫截面,進(jìn)行了如下探索:
(1)方案①:把它折成橫截面為矩形的水槽,如圖.
若∠ABC=90°,設(shè)BC=x厘米,該水槽的橫截面面積為y厘米2,請(qǐng)你寫出y關(guān)于x的函數(shù)關(guān)系式(不必寫出x的取值范圍),并求出當(dāng)x取何值時(shí),y的值最大,最大值又是多少?
方案②:把它折成橫截面為等腰梯形的水槽,如圖.
若∠ABC=1 20°,請(qǐng)你求出該水槽的橫截面面積的最大值,并與方案①中的y的最大值比較大小.
(2)假如你是該興趣小組中的成員,請(qǐng)你再提供一種方案,使你所設(shè)計(jì)的水槽的橫截面面積更大.畫出你設(shè)計(jì)的草圖,標(biāo)上必要的數(shù)據(jù)(不要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊(cè)答案