如圖,以O為圓心的兩個同心圓中,大圓的弦AB是小圓的切線.若大圓半徑為10cm,小圓半徑為6cm,則弦AB的長為    cm.
【答案】分析:只需連接過切點的半徑,構(gòu)造直角三角形.根據(jù)勾股定理和垂徑定理解答.
解答:解:設切點是C,連接OA,OC.
則在Rt△OAC中,AC==8cm,所以AB=16cm.
點評:主要考查了切線的性質(zhì),以及勾股定理和垂徑定理的綜合運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(附加題)如圖,以O為圓心的兩個同心圓中,大圓的直徑AD交小圓于M,N兩點,大圓的弦AB切小精英家教網(wǎng)圓于點C,過點C作直線CE⊥AD,垂足為E,交大圓于F,H兩點.
(1)試判斷線段AC與BC的大小關(guān)系,并說明理由;
(2)求證:FC•CH=AE•AO;
(3)若FC,CH是方程x2-2
5
x+4=0的兩根(CH>CF),求圖中陰影部分圖形的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,以O為圓心的兩個同心圓中,大圓的弦AB切小圓于P,如果AB=4cm,則圖中陰影部分的面積為
 
cm2.(結(jié)果用π表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,以O為圓心的兩個同心圓中,大圓的弦AB是小圓的切線,C為切點,若兩圓的半徑分別為3cm和5cm,則AB的長為
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以O為圓心的兩個同心圓中,大圓的弦AB是小圓的切線,切點為C,若AB=2
3
cm,OA=2cm,則圖中陰影部分(扇形)的面積為
π
6
cm2
π
6
cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,以O為圓心的兩個同心圓中,大圓的弦AB是小圓的切線,C為切點.若兩圓的半徑分別為6cm和10cm,則AB的長為
16
16
 cm.

查看答案和解析>>

同步練習冊答案