如圖,拋物線的頂點(diǎn)為A(2,1),且經(jīng)過原點(diǎn)O,與x軸的另一個(gè)交點(diǎn)為B.
(1)求拋物線的解析式;
(2)在拋物線上求點(diǎn)M,使△MOB的面積是△AOB面積的3倍.

解:(1)由題意,可設(shè)拋物線的解析式為y=a(x-2)2+1,
∵拋物線過原點(diǎn),
∴a(0-2)2+1=0,a=-;
∴拋物線的解析式為y=-(x-2)2+1=-x2+x.

(2)△AOB和所求△MOB同底不等高,且S△MOB=3S△AOB,
∴△MOB的高是△AOB高的3倍,
即M點(diǎn)的縱坐標(biāo)是-3,
∴-3=-x2+x,
即x2-4x-12=0,
解之,得x1=6,x2=-2,
∴滿足條件的點(diǎn)有兩個(gè):M1(6,-3),M2(-2,-3).
分析:(1)已知了拋物線的頂點(diǎn)坐標(biāo),可將其解析式設(shè)為頂點(diǎn)坐標(biāo)式,然后將原點(diǎn)坐標(biāo)代入上式,即可求得待定系數(shù)的值,從而確定該拋物線的解析式.
(2)由于△MON和△AOB同底不等高,因此它們的面積比等于高的比,即M點(diǎn)的縱坐標(biāo)的絕對(duì)值是A點(diǎn)縱坐標(biāo)絕對(duì)值的3倍,由于A是拋物線頂點(diǎn),因此點(diǎn)M必在x軸下方,將其縱坐標(biāo)代入拋物線的解析式中,即可確定M點(diǎn)的坐標(biāo).
點(diǎn)評(píng):此題主要考查了二次函數(shù)解析式的確定、圖形面積的求法、函數(shù)圖象上點(diǎn)的坐標(biāo)意義等知識(shí),難度不大,能夠?qū)D形的面積比轉(zhuǎn)化為M點(diǎn)的縱坐標(biāo)是解決(2)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線的頂點(diǎn)為P(1,0),一條直線與拋物線相交于A(2,1),B(-
12
,m
)兩精英家教網(wǎng)點(diǎn).
(1)求拋物線和直線AB的解析式;
(2)若M為線段AB上的動(dòng)點(diǎn),過M作MN∥y軸,交拋物線于點(diǎn)N,連接NP、AP,試探究四邊形MNPA能否為梯形?若能,求出此點(diǎn)M的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,拋物線的頂點(diǎn)為A(1,-4),且過點(diǎn)B(3,0).
(1)求該拋物線的解析式;
(2)將該拋物線向右平移幾個(gè)單位,可使平移后的拋物線經(jīng)過原點(diǎn)?并直接寫出平移后拋物線與x軸的另一個(gè)交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河南)如圖,拋物線的頂點(diǎn)為P(-2,2),與y軸交于點(diǎn)A(0,3).若平移該拋物線使其頂點(diǎn)P沿直線移動(dòng)到點(diǎn)P′(2,-2),點(diǎn)A的對(duì)應(yīng)點(diǎn)為A′,則拋物線上PA段掃過的區(qū)域(陰影部分)的面積為
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•峨眉山市二模)已知,如圖,拋物線的頂點(diǎn)為C(1,-2),直線y=kx+m與拋物線交于A、B兩點(diǎn),其中OA=3,B點(diǎn)在y軸上.點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)A、B不重合),過點(diǎn)P且垂直于x軸的直線與這條拋物線交于點(diǎn)E.
(1)求直線AB的解析式;
(2)設(shè)點(diǎn)P的橫坐標(biāo)為x,求點(diǎn)E坐標(biāo)(用含x的代數(shù)式表示);
(3)點(diǎn)D是直線AB與這條拋物線對(duì)稱軸的交點(diǎn),是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的三角形與△AOB相似?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•鄂爾多斯)如圖,拋物線的頂點(diǎn)為C(-1,-1),且經(jīng)過點(diǎn)A、點(diǎn)B和坐標(biāo)原點(diǎn)O,點(diǎn)B的橫坐標(biāo)為-3.
(1)求拋物線的解析式;
(2)若點(diǎn)D為拋物線上的一點(diǎn),點(diǎn)E為對(duì)稱軸上的一點(diǎn),且以點(diǎn)A、O、D、E為
頂點(diǎn)的四邊形為平行四邊形,請(qǐng)直接寫出點(diǎn)D的坐標(biāo);
(3)若點(diǎn)P是拋物線第一象限上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PM⊥x軸,垂足為M,是否存在點(diǎn)P,使得以P、M、A為頂點(diǎn)的三角形與△BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案