如圖,在△ABC中,AB=AC,D是BC上任意一點,過D分別向AB、AC引垂線,垂足分別為E、F點.
(1)當點D在BC的什么位置時,DE=DF?并證明.
(2)在滿足第一問的條件下,連接AD,此時圖中共有幾對全等三角形?并請給予寫出.
(3)過C點作AB邊上的高CG,請問DE、DF、CG的長之間存在怎樣的等量關(guān)系?并加以證明.
分析:(1)根據(jù)AAS證△BED≌△CFD,根據(jù)全等三角形的性質(zhì)推出即可;
(2)求出DE=DF,AE=AF,根據(jù)SSS證出△AED≌△AFD即可,根據(jù)SSS證出△ABD≌△ACD即可;
(3)連接AD,根據(jù)三角形的面積公式求出即可.
解答:(1)當點D在BC的中點上時,DE=DF,
證明:∵D為BC中點,
∴BD=CD,
∵AB=AC,
∴∠B=∠C,
∵DE⊥AB,DF⊥AC,
∴∠DEB=∠DFC=90°,
∵在△BED和△CFD中
∠B=∠C
∠DEB=∠DFC
BD=CD
,
∴△BED≌△CFD(AAS),
∴DE=DF.

(2)解:
有3對全等三角形,有△BED≌△CFD,△ADB≌△ADC,△AED≌△AFD,
∵由(1)知△BED≌△CFD,
∴DE=DF,BE=CF,
∵AB=AC,
∴AE=AF,
在△AED和△AFD中
AD=AD
AE=AF
DE=DF
,
∴△AED≌△AFD(SSS),
∵在△ADB和△ADC中
AB=AC
AD=AD
BD=CD

∴△ADB≌△ADC(SSS),
∴有3對全等三角形,有△BED≌△CFD,△ADB≌△ADC,△AED≌△AFD;
(3)CG=DE+DF
證明:連接AD,
∵S三角形ABC=S三角形ADB+S三角形ADC,
1
2
AB×CG=
1
2
AB×DE+
1
2
AC×DF,
∵AB=AC,
∴CG=DE+DF.
點評:本題考查了全等三角形的性質(zhì)和判定的應(yīng)用,主要考查學生運用定理進行推理的能力.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案