【題目】某工廠在生產(chǎn)過程中要消耗大量電能,消耗每千度電產(chǎn)生利潤與電價是一次函數(shù)關系,經(jīng)過測算,工廠每千度電產(chǎn)生利潤(元/千度))與電價(元/千度)的函數(shù)圖象如圖:

當電價為/千度時,工廠消耗每千度電產(chǎn)生利潤是多少?

為了實現(xiàn)節(jié)能減排目標,有關部門規(guī)定,該廠電價(元/千度)與每天用電量(千度)的函數(shù)關系為,且該工廠每天用電量不超過千度,為了獲得最大利潤,工廠每天應安排使用多少度電?工廠每天消耗電產(chǎn)生利潤最大是多少元?

【答案】當工廠每天消耗千度電時,工廠每天消耗電產(chǎn)生利潤為最大,最大利潤為元.

【解析】

(1)設y=kx+b(k≠0),利用待定系數(shù)法求一次函數(shù)解析式解答即可;

(2)根據(jù)利潤=每天的用電量×每千度電產(chǎn)生利潤y,然后整理得到Wm的關系式,再根據(jù)二次函數(shù)的最值問題解答.

設工廠每千度電產(chǎn)生利潤(元/千度)與電價(元/千度)的函數(shù)解析式為:,

該函數(shù)圖象過點,

解得

所以,

當電價/千度時,該工廠消耗每千度電產(chǎn)生利潤(元/千度);設工廠每天消耗電產(chǎn)生利潤為元,由題意得:

時,的增大而最大,

由題意,,

時,,

即當工廠每天消耗千度電時,工廠每天消耗電產(chǎn)生利潤為最大,最大利潤為元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,小聰同學利用直尺和圓規(guī)完成了如下操作:

①作的平分線于點;

②作邊的垂直平分線,相交于點

③連接,.

請你觀察圖形解答下列問題:

(1)線段,,之間的數(shù)量關系是________;

(2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題12分)如圖甲,在平面直角坐標系中,直線y=x+8分別交x軸、y軸于點AB,⊙O的半徑為2個單位長度.點P為直線y=x+8上的動點,過點P⊙O的切線PC、PD,切點分別為C、D,且PC⊥PD

1)試說明四邊形OCPD的形狀(要有證明過程);

2)求點P的坐標;

3)如圖乙,若直線y=x+b⊙O的圓周分成兩段弧長之比為13,請直接寫出b的值

4)向右移動⊙O(圓心O始終保持在x軸上),試求出當⊙O與直線y=x+8有交點時圓心O的橫坐標m的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠BCA=90°,CD是邊AB上的中線,分別過點C,DBABC的平行線,兩線交于點E,且DEAC于點O,連接AE

1)求證:四邊形ADCE是菱形;

2)若∠B=60°BC=6,求四邊形ADCE的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點D在△ABC的邊AB上,點EAC的中點,過點CCFABDE的延長線于點F,連接AF

(1)求證:CD=AF;

(2)若∠AED=2ECD,求證:四邊形ADCF是矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,過點Ax軸平行的直線交拋物線y=于點B、C,線段BC的長度為6,拋物線y=﹣2x2+by軸交于點A,則b=( 。

A. 1 B. 4.5 C. 3 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,在梯形中,,,,點,分別在邊,,上,.

1)求證:四邊形是平行四邊形;

2)當時,求證:四邊形是矩形;

3)在(2)的條件下,如圖2,過點于點,當,,這三條線段的長度滿足怎樣的數(shù)量關系時,可以判斷四邊形是正方形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖 1,在平面直角坐標系中,直線l1:yx5x軸,y軸分別交于A.B兩點.直線l2:y4xbl1交于點 D(3,8)且與x軸,y軸分別交于C、E.

(1)求出點A坐標,直線l2的解析式;

(2)如圖2,點P為線段AD上一點(不含端點),連接CP,一動點QC出發(fā),沿線段CP 以每秒1個單位的速度運動到點P,再沿著線段PD以每秒個單位的速度運動到點D停止,求點Q在整個運動過程中所用最少時間與點P的坐標;

(3)如圖3,平面直角坐標系中有一點G(m2),使得SCEGSCEB,求點G的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點E在⊙O上,C為的中點,過點C作直線CD⊥AE于D,連接AC,BC.

(1試判斷直線CD與⊙O的位置關系,并說明理由;

(2若AD=2,AC=,求AB的長.

查看答案和解析>>

同步練習冊答案