平面直角坐標(biāo)系中,⊙O的圓心在坐標(biāo)原點(diǎn),半徑為2,點(diǎn)A的坐標(biāo)為,直線AB為⊙O的切線,B為切點(diǎn).則B點(diǎn)的坐標(biāo)為   
【答案】分析:由直線AB為⊙O的切線,根據(jù)從圓外一點(diǎn)可以作圓的兩條切線,所以我們可以畫出大致圖形,結(jié)合圖形,作出輔助線,利用三角形相似可以得出.
解答:解:過點(diǎn)A作圓的兩條切線,AB,AC,切點(diǎn)分別為點(diǎn)B,C,連接OC,作CD⊥AB于點(diǎn)D,
∴AB⊥OB,CD⊥AB,OC⊥AC
∵圓半徑為2,點(diǎn)A的坐標(biāo)為(2,2),
∴B點(diǎn)坐標(biāo)為(2,0)
又∵∠ACD+∠DCO=90°,∠ACD+∠A=90°,
∴∠DCO=∠A,∠ADC=∠CEO
∴△OEC∽△CDA

假設(shè)CE=x,OE=y,
∵AD=AB-BD=2-y,CD=2+x,CO=2,AC=2

解以上方程可以求出:x=1,y=
所以C點(diǎn)的坐標(biāo)為(-1,),
故答案為:(2,0),(-1,
點(diǎn)評(píng):此題主要考查了切線長(zhǎng)定理,相似三角形的判定,以及利用相似求對(duì)應(yīng)線段的長(zhǎng)度,題目綜合性較強(qiáng),質(zhì)量挺高.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,平面直角坐標(biāo)系中有一直角梯形OMNH,點(diǎn)H的坐標(biāo)為(-8,0),點(diǎn)N的坐標(biāo)為(-6,-4).
(1)畫出直角梯形OMNH繞點(diǎn)O旋轉(zhuǎn)180°的圖形OABC,并寫出頂點(diǎn)A,B,C的坐標(biāo)(點(diǎn)M的對(duì)應(yīng)點(diǎn)為A,點(diǎn)N的對(duì)應(yīng)點(diǎn)為B,點(diǎn)H的對(duì)應(yīng)點(diǎn)為C);
(2)求出過A,B,C三點(diǎn)的拋物線的表達(dá)式;
(3)試設(shè)計(jì)一種平移使(2)中的拋物線經(jīng)過四邊形ABCO的對(duì)角線交點(diǎn);
(4)截取CE=OF=AG=m,且E,F(xiàn),G分別在線段CO,OA,AB上,四邊精英家教網(wǎng)形BEFG是否存在鄰邊相等的情況?若存在,請(qǐng)直接寫出此時(shí)m的值,并指出相等的鄰邊;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,以O(shè)(0,0),A(1,1),B(3,0)為頂點(diǎn),構(gòu)造平行四邊形,則第四個(gè)頂點(diǎn)的坐標(biāo)可以是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

8、在平面直角坐標(biāo)系中,對(duì)于平面內(nèi)任一點(diǎn)(a,b),若規(guī)定以下三種變換:
1、f(a,b)=(-a,b).如:f(1,3)=(-1,3);
2、g(a,b)=(b,a).如:g(1,3)=(3,1);
3、h(a,b)=(-a,-b).如:h(1,3)=(-1,-3).
按照以上變換有:f(g(2,-3))=f(-3,2)=(3,2),那么f(h(5,-3))等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、在平面直角坐標(biāo)系中,將直線y=-2x+1向下平移4個(gè)單位長(zhǎng)度后.所得直線的解析式為
y=-2x-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

13、下列說法中,正確的有( 。
①無限小數(shù)不一定是無理數(shù)
②矩形具有的性質(zhì)平行四邊形一定具有.
③平面直角坐標(biāo)系中的點(diǎn)與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的.
④一個(gè)數(shù)平方根與這個(gè)數(shù)的立方根相同的數(shù)是0和1.

查看答案和解析>>

同步練習(xí)冊(cè)答案