(12分)汽車(chē)油箱中的余油量Q(升)是它行駛的時(shí)間(小時(shí))的一次函數(shù).某天該汽車(chē)外出時(shí),油箱中余油量與行駛時(shí)間的變化關(guān)系如圖:

(1)根據(jù)圖象,求油箱中的余油Q與行駛時(shí)間的函數(shù)關(guān)系.(7分)
(2)從開(kāi)始算起,如果汽車(chē)每小時(shí)行駛40千米,當(dāng)油箱中余油 20升時(shí),該汽車(chē)行駛了多少千米?(5分)

(1);(2)320

解析試題分析:分析函數(shù)圖像可知函數(shù)為一次函數(shù),根據(jù)圖像中已知兩點(diǎn),設(shè)出函數(shù)一般式,將點(diǎn)代人用待定系數(shù)法可求出函數(shù)解析式;(2)將y=20代入(1)中求得的解析式中,即可求得x值。
試題解析:解:(1)設(shè)一次函數(shù)的表達(dá)式為Q=kt+b(k0)
由圖象可知:函數(shù)圖象過(guò)(0,60)和(4,40)兩點(diǎn)

(2)當(dāng)Q=20時(shí)
-5t+60=20
解得t=8
408="320" (4分)
答:汽車(chē)行駛了320千米.
考點(diǎn):一次函數(shù)實(shí)際應(yīng)用

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

“母親節(jié)”到了,八年級(jí)(1)班班委發(fā)起慰問(wèn)烈屬王大媽的活動(dòng),決定在“母親節(jié)”期間全班同學(xué)利用課余時(shí)間去賣(mài)鮮花籌集慰問(wèn)金.已知同學(xué)們從花店按每支1.2元買(mǎi)進(jìn)鮮花,并按每支3元賣(mài)出.
(1)求同學(xué)們賣(mài)出鮮花的銷(xiāo)售額(元)與銷(xiāo)售量(支)之間的函數(shù)關(guān)系式;
(2)若從花店購(gòu)買(mǎi)鮮花的同時(shí),還總共用去40元購(gòu)買(mǎi)包裝材料,求所籌集的慰問(wèn)金(元)與銷(xiāo)售量(支)之間的函數(shù)關(guān)系式;若要籌集不少于500元的慰問(wèn)金,則至少要賣(mài)出鮮花多少支?(慰問(wèn)金=銷(xiāo)售額-成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知一次函數(shù)
(1)為何值時(shí),的增大而減?
(2)為何值時(shí),它的圖象經(jīng)過(guò)原點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

做服裝生意的王老板經(jīng)營(yíng)甲、乙兩個(gè)店鋪,每個(gè)店鋪在同一段時(shí)間內(nèi)都能售出A,B兩種款式的服裝合計(jì)30件,并且每售出一件A款式和B款式服裝,甲店鋪獲毛利潤(rùn)分別為30元和40元,乙店鋪獲毛利潤(rùn)分別為27元和36元。某日王老板進(jìn)貨A款式服裝35件,B款式服裝25件。怎樣分配給每個(gè)店鋪各30件服裝,使得在保證乙店鋪毛利潤(rùn)不小于950元的前提下,王老板獲取的總毛利潤(rùn)最大?最大的總毛利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知某一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)(0,-3),且與正比例函數(shù)y=x的圖象相交于點(diǎn)(2,a)。

求:(1)a的值.(2)k、b的值。(3)這兩個(gè)函數(shù)圖象與x軸所圍成的三角形面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知一次函數(shù)的圖象與反比例函數(shù)的圖象相交,其中一個(gè)交點(diǎn)的縱坐標(biāo)為6.
(1)求兩個(gè)函數(shù)的解析式;
(2)若已知另一點(diǎn)的橫坐標(biāo)為,結(jié)合圖象求出時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某工程機(jī)械廠根據(jù)市場(chǎng)需求,計(jì)劃生產(chǎn)A、B兩種型號(hào)的大型挖掘機(jī)共100臺(tái),該廠所籌生產(chǎn)資金不少于22 400萬(wàn)元,但不超過(guò)22 500萬(wàn)元,且所籌資金全部用于生產(chǎn)此兩型挖掘機(jī),所生產(chǎn)的此兩型挖掘機(jī)可全部售出,此兩型挖掘機(jī)的生產(chǎn)成本和售價(jià)如下表:

型號(hào)
A
B
成本(萬(wàn)元/臺(tái))
200
240
售價(jià)(萬(wàn)元/臺(tái))
250
300
(1)該廠對(duì)這兩型挖掘機(jī)有哪幾種生產(chǎn)方案?
(2)該廠如何生產(chǎn)能獲得最大利潤(rùn)?
(3)根據(jù)市場(chǎng)調(diào)查,每臺(tái)B型挖掘機(jī)的售價(jià)不會(huì)改變,每臺(tái)A型挖掘機(jī)的售價(jià)將會(huì)提高m萬(wàn)元(m>0),該廠應(yīng)該如何生產(chǎn)獲得最大利潤(rùn)?(注:利潤(rùn)=售價(jià)﹣成本)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

蓮城超市以10元/件的價(jià)格調(diào)進(jìn)一批商品,根據(jù)前期銷(xiāo)售情況,每天銷(xiāo)售量y(件)與該商品定價(jià)x(元)是一次函數(shù)關(guān)系,如圖所示.

(1)求銷(xiāo)售量y與定價(jià)x之間的函數(shù)關(guān)系式;
(2)如果超市將該商品的銷(xiāo)售價(jià)定為13元/件,不考慮其它因素,求超市每天銷(xiāo)售這種商品所獲得的利潤(rùn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某公司投資700萬(wàn)元購(gòu)甲、乙兩種產(chǎn)品的生產(chǎn)技術(shù)和設(shè)備后,進(jìn)行這兩種產(chǎn)品加工.已知生產(chǎn)甲種產(chǎn)品每件還需成本費(fèi)30元,生產(chǎn)乙種產(chǎn)品每件還需成本費(fèi)20元.經(jīng)市場(chǎng)調(diào)研發(fā)現(xiàn):甲種產(chǎn)品的銷(xiāo)售單價(jià)為x(元),年銷(xiāo)售量為y(萬(wàn)件),當(dāng)35≤x<50時(shí),y與x之間的函數(shù)關(guān)系式為y=20﹣0.2x;當(dāng)50≤x≤70時(shí),y與x的函數(shù)關(guān)系式如圖所示,乙種產(chǎn)品的銷(xiāo)售單價(jià),在25元(含)到45元(含)之間,且年銷(xiāo)售量穩(wěn)定在10萬(wàn)件.物價(jià)部門(mén)規(guī)定這兩種產(chǎn)品的銷(xiāo)售單價(jià)之和為90元.

(1)當(dāng)50≤x≤70時(shí),求出甲種產(chǎn)品的年銷(xiāo)售量y(萬(wàn)元)與x(元)之間的函數(shù)關(guān)系式.
(2)若公司第一年的年銷(xiāo)售量利潤(rùn)(年銷(xiāo)售利潤(rùn)=年銷(xiāo)售收入﹣生產(chǎn)成本)為W(萬(wàn)元),那么怎樣定價(jià),可使第一年的年銷(xiāo)售利潤(rùn)最大?最大年銷(xiāo)售利潤(rùn)是多少?
(3)第二年公司可重新對(duì)產(chǎn)品進(jìn)行定價(jià),在(2)的條件下,并要求甲種產(chǎn)品的銷(xiāo)售單價(jià)x(元)在50≤x≤70范圍內(nèi),該公司希望到第二年年底,兩年的總盈利(總盈利=兩年的年銷(xiāo)售利潤(rùn)之和﹣投資成本)不低于85萬(wàn)元.請(qǐng)直接寫(xiě)出第二年乙種產(chǎn)品的銷(xiāo)售單價(jià)m(元)的范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案