精英家教網(wǎng)如圖,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,若AD的長(zhǎng)為2x+3,BE的長(zhǎng)為x+1,ED=5,則x的值為
 
分析:首先判斷出∠BCE=∠ACD,再結(jié)合AC=BC,∠BEC=∠CDA=90°,可判斷△BCE≌△CAD,得出BE=CD,AD=CE,從而根據(jù)CD+DE=CE=AD,得出方程x+1+5=2x+3,解出即可得出x的值.
解答:解:∵BE⊥CE,AD⊥CE,
∴∠BCE+ACD=90°,∠CAD+ACD=90°,
∴∠BCE=∠CAD,
在△BCE與△CAD中
AC=BC
∠BEC=∠CDA
∠BCE=∠ACD

∴△BCE≌△CAD,
∴BE=CD,AD=CE,
又∵AD的長(zhǎng)為2x+3,BE的長(zhǎng)為x+1,ED=5,
∴CD+DE=CE=AD,即可得出方程x+1+5=2x+3,
解得:x=3.
故答案為:3.
點(diǎn)評(píng):本題考查了全等三角形的判定及性質(zhì),屬于中等難度,解答本題的關(guān)鍵在于熟練掌握三角形全等的判定定理,以及全等三角形的性質(zhì):對(duì)應(yīng)邊、對(duì)應(yīng)角分別相等.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,則MN的長(zhǎng)是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

10、如圖,∠ACB=90°,AC=BC,AE⊥CE于E,BD⊥CE于D,AE=5cm,BD=2cm,則DE的長(zhǎng)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,∠ACB=90°,CD⊥AB,垂足為D,下列結(jié)論錯(cuò)誤的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,∠ACB=90°,AC=BC,D為AB上一點(diǎn),AE⊥CD,BF⊥CD,交CD延長(zhǎng)線于F點(diǎn).求證:BF=CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,∠ACB=90°,AC=AD,DE⊥AB,求證:△CDE是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案