南博汽車城銷售某種型號的汽車,每輛進(jìn)貨價為25萬元,市場調(diào)研表明:當(dāng)銷售價為29萬元時,平均每周能售出8輛,而當(dāng)銷售價每降低0.5萬元時,平均每周能多售出4輛.如果設(shè)每輛汽車精英家教網(wǎng)降價x萬元,每輛汽車的銷售利潤為y萬元.(銷售利潤=銷售價-進(jìn)貨價)
(1)求y與x的函數(shù)關(guān)系式;在保證商家不虧本的前提下,寫出x的取值范圍;
(2)假設(shè)這種汽車平均每周的銷售利潤為z萬元,試寫出z與x之間的函數(shù)關(guān)系式;
(3)當(dāng)每輛汽車的定價為多少萬元時,平均每周的銷售利潤最大,最大利潤是多少?
分析:(1)依題意易得y與x的函數(shù)關(guān)系式;
(2)依題意可得z=-8x2+24x+32=-8(x-
3
2
2+50.故x=
3
2
時有最大值.
解答:解:(1)由題意得:
y=29-25-x,(2分)
∴y=-x+4(0≤x≤4);(3分)

(2)z=(8+
x
0.5
×4)y (5分)
=(8x+8)(-x+4)(6分)
∴z=-8x2+24x+32
=-8(x-
3
2
2+50 (8分)

(3)由第二問的關(guān)系式可知:當(dāng)x=
3
2
時,z最大=50 (9分)
∴當(dāng)定價為29-1.5=27.5萬元時,有最大利潤,最大利潤為50萬元(10分)
或:當(dāng)x=-
b
2a
=-
24
2×(-8)
=1.5
(8分)
z最大值=
4ac-b2
4a
=
4×(-8)×32-242
4×(-8)
=50
(9分)
∴當(dāng)定價為29-1.5=27.5萬元時,有最大利潤,最大利潤為50萬元(10分).
點(diǎn)評:本題是二次函數(shù)的應(yīng)用問題,與現(xiàn)實(shí)生活結(jié)合非常緊密,考查了學(xué)生的應(yīng)用能力,難度不是很大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本題滿分10分)南博汽車城銷售某種型號的汽車,每輛進(jìn)貨價為25萬元,市場調(diào)研表明:當(dāng)銷售價為29萬元時,平均每周能售出8輛,而當(dāng)銷售價每降低0.5萬元時,平均每周能多售出4輛.如果設(shè)每輛汽車降價萬元,每輛汽車的銷售利潤為萬元.(銷售利潤銷售價進(jìn)貨價)

(1)求的函數(shù)關(guān)系式;在保證商家不虧本的前提下,寫出的取值范圍;

(2)假設(shè)這種汽車平均每周的銷售利潤為萬元,試寫出之間的函數(shù)關(guān)系式;

(3)當(dāng)每輛汽車的定價為多少萬元時,平均每周的銷售利潤最大?最大利潤是多少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆江蘇省泰州市蘇陳中學(xué)九年級下學(xué)期質(zhì)量檢測數(shù)學(xué)卷 題型:解答題

(本題滿分10分)南博汽車城銷售某種型號的汽車,每輛進(jìn)貨價為25萬元,市場調(diào)研表明:當(dāng)銷售價為29萬元時,平均每周能售出8輛,而當(dāng)銷售價每降低0.5萬元時,平均每周能多售出4輛.如果設(shè)每輛汽車降價萬元,每輛汽車的銷售利潤為萬元.(銷售利潤銷售價進(jìn)貨價)
(1)求的函數(shù)關(guān)系式;在保證商家不虧本的前提下,寫出的取值范圍;
(2)假設(shè)這種汽車平均每周的銷售利潤為萬元,試寫出之間的函數(shù)關(guān)系式;
(3)當(dāng)每輛汽車的定價為多少萬元時,平均每周的銷售利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省泰州市九年級下學(xué)期質(zhì)量檢測數(shù)學(xué)卷 題型:解答題

(本題滿分10分)南博汽車城銷售某種型號的汽車,每輛進(jìn)貨價為25萬元,市場調(diào)研表明:當(dāng)銷售價為29萬元時,平均每周能售出8輛,而當(dāng)銷售價每降低0.5萬元時,平均每周能多售出4輛.如果設(shè)每輛汽車降價萬元,每輛汽車的銷售利潤為萬元.(銷售利潤銷售價進(jìn)貨價)

(1)求的函數(shù)關(guān)系式;在保證商家不虧本的前提下,寫出的取值范圍;

(2)假設(shè)這種汽車平均每周的銷售利潤為萬元,試寫出之間的函數(shù)關(guān)系式;

(3)當(dāng)每輛汽車的定價為多少萬元時,平均每周的銷售利潤最大?最大利潤是多少?

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第20章《二次函數(shù)和反比例函數(shù)》中考題集(23):20.5 二次函數(shù)的一些應(yīng)用(解析版) 題型:解答題

南博汽車城銷售某種型號的汽車,每輛進(jìn)貨價為25萬元,市場調(diào)研表明:當(dāng)銷售價為29萬元時,平均每周能售出8輛,而當(dāng)銷售價每降低0.5萬元時,平均每周能多售出4輛.如果設(shè)每輛汽車降價x萬元,每輛汽車的銷售利潤為y萬元.(銷售利潤=銷售價-進(jìn)貨價)
(1)求y與x的函數(shù)關(guān)系式;在保證商家不虧本的前提下,寫出x的取值范圍;
(2)假設(shè)這種汽車平均每周的銷售利潤為z萬元,試寫出z與x之間的函數(shù)關(guān)系式;
(3)當(dāng)每輛汽車的定價為多少萬元時,平均每周的銷售利潤最大,最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案