已知⊙O1和⊙O2相交于A、B兩點,⊙O1的半徑r1=5,⊙O2的半徑r2=4,公共弦AB=6,求它的圓心距O1O2的長。
解:當O1、O2在AB兩側(cè)時,連接O1A、O2A設(shè)O1O2⊥AB于C1
===4
===
∴O1O2=O1C+O2C=4+
當OO在AB同側(cè)時,同理可得O1O2=O1C-O2C=4-。
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

20、已知⊙O1和⊙O2相外切,它們的半徑分別是1厘米和3厘米.那么半徑是4厘米,且和⊙O1、⊙O2都相切的圓共有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、已知⊙O1和⊙O2相內(nèi)切,且⊙O1的半徑為6cm,兩圓的圓心距為3cm,則⊙O2的半徑為
3或9
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知⊙O1和⊙O2相外切,且它們的半徑分別為1、2,則圓心距O1O2的長為
3
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知⊙O1和⊙O2相外切,它們的半徑分別為2cm和3cm,則圓心距O1O2等于
5
5
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知⊙O1和⊙O2相外切,O1O2=7,⊙O1的半徑為4,則⊙O2的半徑為
3
3

查看答案和解析>>

同步練習冊答案