如圖,已知△ABC為直角三角形,∠ACB=90°,AC=BC,點(diǎn)A、C在x軸上,點(diǎn)B坐標(biāo)為(3,m)(m>0),線段AB與y軸相交于點(diǎn)D,以P(1,0)為頂點(diǎn)的二次函數(shù)圖像經(jīng)過點(diǎn)B、D.
【小題1】請(qǐng)直接寫出用m表示點(diǎn)A、D的坐標(biāo)
【小題2】求這個(gè)二次函數(shù)的解析式;
【小題3】點(diǎn)Q為二次函數(shù)圖像上點(diǎn)P至點(diǎn)B之間的一點(diǎn),連結(jié)PQ、BQ,求四邊形ABQP面積的最大值.
【小題1】A(3-m,0),D(0,m-3 )
【小題2】設(shè)以P(1,0)為頂點(diǎn)的拋物線的解析式為y=a(x-1)2(a≠0)
∵拋物線過點(diǎn)B、D,
∴ 解得 …………4分
所以二次函數(shù)的解析式為y=(x-1)2,
即:y=x2-2x+1 …………5分
【小題3】設(shè)點(diǎn)Q的坐標(biāo)為(x,x2-2 x+1),顯然1<x<3 …6分
連結(jié)BP,過點(diǎn)Q作QH⊥x軸,交BP于點(diǎn)H.
∵A(-1,0),P(1,0),B(3,4)
∴AP=2,BC=3,PC=2
由P(1,0),B(3,4)求得直線BP的解析式為y=2x-2
∵QH⊥x軸,點(diǎn)Q的坐標(biāo)為(x,x2-2 x+1)
∴點(diǎn)H的橫坐標(biāo)為x,∴點(diǎn)H的坐標(biāo)為(x,2x-2)
∴QH=2x-2-(x2-2x+1)=-x2+4x-3 …………7分
∴四邊形ABQP面積S=S△APB+S△QPB=×AP×BC+×QH×PC
=×2×4+×(-x2+4x-3)×2
=-x2+4x+1=-(x-2)2+5 …………9分
∵1<x<3
∴當(dāng)x=2時(shí),S取得最大值為5, …………10分
即當(dāng)點(diǎn)Q的坐標(biāo)為(2,1)時(shí),四邊形ABQP面積的最大值為5
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com