如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,點A的坐標(biāo)為(0,4),點B的坐標(biāo)為(4,0),點C的坐標(biāo)為(﹣4,0),點P在射線AB上運動,連結(jié)CP與y軸交于點D,連結(jié)BD.過P,D,B三點作⊙Q與y軸的另一個交點為E,延長DQ交⊙Q于點F,連結(jié)EF,BF.

(1)求直線AB的函數(shù)解析式;

(2)當(dāng)點P在線段AB(不包括A,B兩點)上時.

①求證:∠BDE=∠ADP;

②設(shè)DE=x,DF=y.請求出y關(guān)于x的函數(shù)解析式;

(3)請你探究:點P在運動過程中,是否存在以B,D,F(xiàn)為頂點的直角三角形,滿足兩條直角邊之比為2:1?如果存在,求出此時點P的坐標(biāo):如果不存在,請說明理由.

 

【答案】

解:(1)設(shè)直線AB的函數(shù)解析式為y=kx+4,

代入(4,0)得:4k+4=0,解得:k=-1,

∴直線AB的函數(shù)解析式為。

(2)①證明:由已知得:OB=OC,∠BOD=∠COD=90°,

又∵OD=OD,∴△BOD≌△COD(SAS)。∴∠BOD=∠CDO。

∵∠CDO=∠ADP,∴∠BDE=∠ADP。

②連結(jié)PE,

∵∠ADP是△DPE的一個外角,

∴∠ADP=∠DEP+∠DPE。

∵∠BDE是△ABD的一個外角,

∴∠BDE=∠ABD+∠OAB。

∵∠ADP=∠BDE,∠DEP=∠ABD,

∴∠DPE=∠OAB。

∵OA=OB=4,∠AOB=90°,∴∠OAB=45°!唷螪PE=45°!唷螪FE=∠DPE=45°。

∵DF是⊙Q的直徑,∴∠DEF=90°,∴△DEF是等腰直角三角形。

∴DF=DE,即y=x。

(3)當(dāng)BD:BF=2:1時,過點F作FH⊥OB于點H,

∵∠DBO+∠OBF=90°,∠OBF+∠BFH=90°,

∴∠DBO=∠BFH.

又∵∠DOB=∠BHF=90°,∴△BOD∽△FHB.

。∴FH=2,OD=2BH.

∵∠FHO=∠EOH=∠OEF=90°,

∴四邊形OEFH是矩形!郞E=FH=2!郋F=OH=4-OD。

∵DE=EF,∴2+OD=4-OD,解得:OD=,∴點D的坐標(biāo)為(0,)。

∴直線CD的解析式為。

得:。

∴點P的坐標(biāo)為(2,2)。

當(dāng)BD:BF=1:2時,

連結(jié)EB,同(2)①可得:∠ADB=∠EDP,

而∠ADB=∠DEB+∠DBE,∠EDP=∠DAP+∠DPA,

∵∠DEP=∠DPA,∴∠DBE=∠DAP=45°。

∴△DEF是等腰直角三角形。

過點F作FG⊥OB于點G,同理可得:△BOD∽△FGB,

。∴FG=8,OD=BG。

∵∠FGO=∠GOE=∠OEF=90°,∴四邊形OEFG是矩形。

∴OE=FG=8,∴EF=OG=4+2OD。

∵DE=EF,∴8﹣OD=4+2OD,解得OD=。∴點D的坐標(biāo)為(0,)。

∴直線CD的解析式為:

得:。

∴點P的坐標(biāo)為(8,-4)。

綜上所述,點P的坐標(biāo)為(2,2)或(8,-4)。

【解析】(1)設(shè)直線AB的函數(shù)解析式為y=kx+4,把(4,0)代入即可。

(2)①證出△BOD≌△COD,得出∠BOD=∠CDO,再根據(jù)∠CDO=∠ADP,即可得出∠BDE=∠ADP。

②連結(jié)PE,由∠ADP=∠DEP+∠DPE,∠BDE=∠ABD+∠OAB,∠ADP=∠BDE,∠DEP=∠ABD,得出∠DPE=∠OAB,再證出∠DFE=∠DPE=45°,最后根據(jù)∠DEF=90°,得出△DEF是等腰直角三角形,從而求出DF=DE,即y=x。

(3)分BD:BF=2:1和BD:BF=1:2兩種情況討論即可。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案