(2010•皇姑區(qū)一模)已知∠1與∠2互補(bǔ),若∠1=43°26′,則∠2=
136°34′
136°34′
分析:根據(jù)互為補(bǔ)角的和等于180°列式進(jìn)行計算即可求解.
解答:解:∵∠1與∠2互補(bǔ),∠1=43°26′,
∴∠2=180°-43°26′=136°34′.
故答案為:136°34′.
點評:本題考查了互為補(bǔ)角的和等于180°的性質(zhì),是基礎(chǔ)題,比較簡單.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2010•皇姑區(qū)一模)正比例函數(shù)y=2x的圖象沿x軸向右平移2個單位,所得圖象的函數(shù)解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•皇姑區(qū)一模)下列事件中,必然事件是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•皇姑區(qū)一模)下列結(jié)論正確的個數(shù)是( 。
(1)一個多邊形的內(nèi)角和是外角和的3倍,則這個多邊形是六邊形;
(2)如果一個三角形的三邊長分別為6、8、10,則最長邊上的中線長為5;
(3)若△ABC∽△DEF,相似比為1:4,則S△ABC:S△DEF=1:4;
(4)若等腰三角形一個角為80°,則底角為80°或50°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2010•皇姑區(qū)一模)如圖所示,ABCD為正方形.
(1)如圖1,點P為△ABC的內(nèi)心,問:DP與DA有何數(shù)量關(guān)系?證明你的結(jié)論.
(2)如圖2,若點E在CB邊上(不與點C、B重合),點F在BA的延長線上,AF=CE,點P為△FBE的內(nèi)心,則DP與DF有何數(shù)量關(guān)系?證明你的結(jié)論.
(3)如圖3,若點E在CB延長線上(不與點B重合),點F在BA的延長線上,AF=CE,點P是△FEB中與∠FEB、∠FBE相鄰的兩個外角平分線的交點,完成圖3,判斷DP與DF之間的數(shù)量關(guān)系(直接寫出結(jié)論,不證明).

查看答案和解析>>

同步練習(xí)冊答案