分解因式:(x4+x2-4)(x4+x2+3)+10=
(x4+x2+1)(x2+2)(x+1)(x-1)
(x4+x2+1)(x2+2)(x+1)(x-1)
分析:首先利用換元,令x4+x2=y,然后根據(jù)十字相乘法進(jìn)行因式分解,最后再將x4+x2=y,代入進(jìn)行還原,得出結(jié)果.
解答:解:令x4+x2=y,
∴原式=(y-4)(y+3)+10
=y2-y-2
=(y+1)(y-2)
將x4+x2=y代入,
所以原式=(x4+x2+1)(x4+x2-2)
=(x4+x2+1)(x2+2)(x2-1)
=(x4+x2+1)(x2+2)(x+1)(x-1).
故答案為為(x4+x2+1)(x2+2)(x+1)(x-1).
點評:本題綜合考查了十字相乘法和換元法,做這類題必須要記得還原回去,不能得出的結(jié)果為(y+1)(y-2).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、分解因式:(x4-4x2+1)(x4+3x2+1)+10x4=
(x+1)2(x-1)2(x2+x+1)(x2-x+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

分解因式:
(1)x4+2x2-3;
(2)x4+2x2+9;
(3)(1-a2)(1-b2)-4ab;
(4)x2-xy+2x+y-3;
(5)a2+(a+1)2+a2(a+1)2;
(6)(m+n)3+2mn(1-m-n)-1;
(7)(a2+a+1)(a2+a+2)-12;
(8)12x4-56x3+89x2-56x+12.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、把下列多項式分解因式
①x3-4x
②x4-8x2+16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年初中數(shù)學(xué)單元提優(yōu)測試卷-分組法因式分解(解析版) 題型:填空題

分解因式:(x4﹣4x2+1)(x4+3x2+1)+10x4=  

 

查看答案和解析>>

同步練習(xí)冊答案