菱形ABCD的邊長為5cm,其中一條對角線長為6cm,則菱形ABCD的面積為________cm2

24
分析:根據(jù)菱形的性質(zhì)利用勾股定理求得另一條對角線,再根據(jù)菱形的面積等于兩對角線乘積的一半求得菱形的面積.
解答:因為菱形的對角線互相垂直平分,根據(jù)勾股定理可得另一對角線的一半為4cm,
則另一對角線長為8cm,則菱形ABCD的面積為6×8÷2=24cm2
故答案為24.
點(diǎn)評:主要考查菱形的面積公式:兩條對角線的積的一半,綜合利用了菱形的性質(zhì)和勾股定理.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,菱形ABCD的邊長為4,∠A=60°,以點(diǎn)A為圓心,AD長為半徑畫弧,以點(diǎn)B為圓心,BC長為半徑畫弧,則圖中陰影部分的面積是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,菱形ABCD的邊長為2,BD=2,E、F分別是邊AD,CD上的兩個動點(diǎn),且滿足AE+CF=2.
(1)求證:△BDE≌△BCF;
(2)判斷△BEF的形狀,并說明理由;
(3)設(shè)△BEF的面積為S,求S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

25、菱形ABCD的邊長為24厘米,∠A=60°,質(zhì)點(diǎn)P從點(diǎn)A出發(fā)沿著AB-BD-DA作勻速運(yùn)動,質(zhì)點(diǎn)Q從點(diǎn)D同時出發(fā)沿著線路DC-CB-BD作勻速運(yùn)動.
(1)求BD的長;
(2)已知質(zhì)點(diǎn)P、Q運(yùn)動的速度分別為4cm/秒、5cm/秒,經(jīng)過12秒后,P、Q分別到達(dá)M、N兩點(diǎn),若按角的大小進(jìn)行分類,請問△AMN是哪一類三角形,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•泰寧縣質(zhì)檢)如圖菱形ABCD的邊長為2,對角線BD=2,E、F分別是AD、CD上的兩個動點(diǎn),且滿足AE+CF=2.
(1)求證:△BDE≌△BCF;
(2)判斷△BEF的形狀,并說明理由.同時指出△BCF是由△BDE經(jīng)過如何變換得到?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•盤錦)已知菱形ABCD的邊長為5,∠DAB=60°.將菱形ABCD繞著A逆時針旋轉(zhuǎn)得到菱形AEFG,設(shè)∠EAB=α,且0°<α<90°,連接DG、BE、CE、CF.
(1)如圖(1),求證:△AGD≌△AEB;
(2)當(dāng)α=60°時,在圖(2)中畫出圖形并求出線段CF的長;
(3)若∠CEF=90°,在圖(3)中畫出圖形并求出△CEF的面積.

查看答案和解析>>

同步練習(xí)冊答案