試說明:無論x,y取何值時,代數(shù)式(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)的值是常數(shù).
原式=(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3
=x3+3x2y-5xy2+9y3-2y3+2xy2+x2y-2x3-4x2y+x3+3xy2-7y3
=(1-2+1)x3+(3+1-4)x2y+(-5+2+3)xy2+(9-2-7)y3
=0
∴無論x,y取何值,原式的值均為常數(shù)0.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

23、試說明:無論x,y取何值時,代數(shù)式(x3+3x2y-5xy2+9y3)+(y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)的值是常數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

21、(1)若|a-1|+(b-2)2=0,A=3a2-6ab+b2,B=-a2-5,求A-B的值.
(2)試說明:無論x,y取何值時,代數(shù)式.
(x3+3x2y-5xy+6y3)+(y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)的值是常數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

試說明:無論x,y取何值時,代數(shù)式(x3+3x2y-5xy2+9y3)+(-2y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)的值是常數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)若|a-1|+(b-2)2=0,A=3a2-6ab+b2,B=-a2-5,求A-B的值.
(2)試說明:無論x,y取何值時,代數(shù)式.
(x3+3x2y-5xy2+6y3)+(y3+2xy2+x2y-2x3)-(4x2y-x3-3xy2+7y3)的值是常數(shù).

查看答案和解析>>

同步練習冊答案