【題目】如圖,已知直線(xiàn)l與⊙O相離,OA⊥l于點(diǎn)A,交⊙O于點(diǎn)P,OA=5,AB與⊙O相切于點(diǎn)B,BP的延長(zhǎng)線(xiàn)交直線(xiàn)l于點(diǎn)C.

(1)求證:AB=AC.
(2)若PC=2 ,求⊙O的半徑.

【答案】
(1)證明:連接OB,

∵OB=OP,

∴∠OPB=∠OBP,

∵∠OPB=∠APC,

∴∠OBP=∠APC,

∵AB與⊙O相切于點(diǎn)B,

∴OB⊥AB,

∴∠ABO=90°,

∴∠ABP+∠OBP=90°,

∵OA⊥AC,

∴∠OAC=90°,

∴∠ACB+∠APC=90°,

∴∠ABP=∠ACB,

∴AB=AC


(2)證明:設(shè)⊙O的半徑為r,

在Rt△AOB中,AB2=OA2﹣OB2=52﹣r2,

在Rt△ACP中,AC2=PC2﹣PA2,

AC2=(2 2﹣(5﹣r)2,

∵AB=AC,

∴52﹣r2=(2 2﹣(5﹣r)2

解得:r=3,

則⊙O的半徑為3.


【解析】(1)由同圓半徑相等和對(duì)頂角相等得∠OBP=∠APC,由圓的切線(xiàn)性質(zhì)和垂直得∠ABP+∠OBP=90°和∠ACB+∠APC=90°,則∠ABP=∠ACB,根據(jù)等角對(duì)等邊得AB=AC;(2)設(shè)⊙O的半徑為r,分別在Rt△AOB和Rt△ACP中根據(jù)勾股定理列等式,并根據(jù)AB=AC得52﹣r2=(2 2﹣(5﹣r)2 , 求出r的值即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】由于霧霾天氣趨于嚴(yán)重,我市某電器商城根據(jù)民眾健康需求,代理銷(xiāo)售某種家用空氣凈化器,其進(jìn)價(jià)是200元/臺(tái).經(jīng)過(guò)市場(chǎng)銷(xiāo)售后發(fā)現(xiàn):在一個(gè)月內(nèi),當(dāng)售價(jià)是400元/臺(tái)時(shí),可售出200臺(tái),且售價(jià)每降低10元,就可多售出50臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于300元/臺(tái),代理銷(xiāo)售商每月要完成不低于450臺(tái)的銷(xiāo)售任務(wù).
(1)完成下列表格,并直接寫(xiě)出月銷(xiāo)售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式及售價(jià)x的取值范圍;

售價(jià)(元/臺(tái))

月銷(xiāo)售量(臺(tái))

400

200

250

x


(2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場(chǎng)每月銷(xiāo)售這種空氣凈化器所獲得的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,AB⊥BD, = ,將ABCD放置在平面直角坐標(biāo)系中,且AD⊥x軸,點(diǎn)D的橫坐標(biāo)為1,點(diǎn)C的縱坐標(biāo)為3,恰有一條雙曲線(xiàn) (k>0)同時(shí)經(jīng)過(guò)B、D兩點(diǎn),則點(diǎn)B的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司需招聘一名員工,對(duì)應(yīng)聘者甲、乙、丙從筆試、面試、體能三個(gè)方面進(jìn)行量化考核.甲、乙、丙各項(xiàng)得分如下表:

筆試

面試

體能

83

79

90

85

80

75

80

90

73


(1)根據(jù)三項(xiàng)得分的平均分,從高到低確定三名應(yīng)聘者的排名順序.
(2)該公司規(guī)定:筆試,面試、體能得分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計(jì)入總分.根據(jù)規(guī)定,請(qǐng)你說(shuō)明誰(shuí)將被錄用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一堂關(guān)于“折紙問(wèn)題”的數(shù)學(xué)綜合實(shí)踐探究課中,小明同學(xué)將一張矩形ABCD紙片,按如圖進(jìn)行折疊,分別在BC、AD兩邊上取兩點(diǎn)E,F(xiàn),使CE=AF,分別以DE,BF為對(duì)稱(chēng)軸將△CDE與△ABF翻折得到△C′DE與△A′BF,且邊C′E與A′B交于點(diǎn)G,邊A′F與C′D交于一點(diǎn)H.已知tan∠EBG= ,A′G=6,C′G=1,則矩形紙片ABCD的周長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A是雙曲線(xiàn)y= (x>0)上的一點(diǎn),連結(jié)OA,在線(xiàn)段OA上取一點(diǎn)B,作BC⊥x軸于點(diǎn)C,以BC的中點(diǎn)為對(duì)稱(chēng)中心,作點(diǎn)O的中心對(duì)稱(chēng)點(diǎn)O′,當(dāng)O′落在這條雙曲線(xiàn)上時(shí), =

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCD中,AB=3cm,AD=6cm,∠ADC的角平分線(xiàn)DE交BC于點(diǎn)E,交AC于點(diǎn)F,CG⊥DE,垂足為G,DG= cm,則EF的長(zhǎng)為(

A.2cm
B. cm
C.1cm
D. cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,1),B(4,0),C(4,4).

(1)按下列要求作圖:
①將△ABC向左平移4個(gè)單位,得到△A1B1C1;
②將△A1B1C1繞點(diǎn)B1逆時(shí)針旋轉(zhuǎn)90°,得到△A2B2C2
(2)求點(diǎn)C1在旋轉(zhuǎn)過(guò)程中所經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,△ABC內(nèi)接于⊙O,∠BAC的平分線(xiàn)AD交⊙O于點(diǎn)D,交BC于點(diǎn)E,過(guò)點(diǎn)D作DF∥BC,交AB的延長(zhǎng)線(xiàn)于點(diǎn)F.

(1)求證:△BDE∽∠ADB;
(2)試判斷直線(xiàn)DF與⊙O的位置關(guān)系,并說(shuō)明理由;
(3)如圖2,條件不變,若BC恰好是⊙O的直徑,且AB=6,AC=8,求DF的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案