給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱該四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.

(1)在你學(xué)過的特殊四邊形中,寫出兩種勾股四邊形的名稱:__________和_________;

(2)如圖1,已知格點(小正方形的頂點)O(0,0),A(3,0),B(0,4).請畫出以格點

為頂點,為勾股邊,且對角線相等的勾股四邊形;

 


(3)如圖2,將繞頂點按順時針方向旋轉(zhuǎn),得到,連接

已知

求證:,即四邊形是勾股四邊形.

解(1)正方形、長方形、直角梯形.(任選兩個均可)

(2)答案如圖所示.M(3,4)或M(4,3).

(3)證明:連結(jié)EC

∵△ABC≌△DBE 

AC=DE,BC=BE

∵∠CBE=60° 

EC=BC,∠BCE=60°

∵∠DCB=30° 

∴∠DCE=90°   ∴DC2+EC2=DE2 

DC2+BC2=AC2,即四邊形ABCD是勾股四邊形

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、我們給出如下定義:若一個四邊形的兩條對角線相等,則稱這個四邊形為等對角線四邊形.請解答下列問題:
(1)寫出你所學(xué)過的特殊四邊形中是等對角線四邊形的兩種圖形的名稱;
(2)探究:當(dāng)?shù)葘蔷四邊形中兩條對角線所夾銳角為60°時,這對60°角所對的兩邊之和與其中一條對角線的大小關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)寫出你所學(xué)過的特殊四邊形中是勾股四邊形的兩種圖形的名稱正方形、長方形、直角梯形(任選兩個均可);
(2)如圖1,已知格點(小正方形的頂點)O(0,0),A(3,0),B(0,4),請你畫出以格點為頂點,OA,OB為勾股邊且對角線相等的勾股四邊形OAMB;
(3)如圖2,將△ABC繞頂點B按順時針方向旋轉(zhuǎn)60°,得到△DBE,連接AD,DC,∠DCB=30度.求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)除了正方形外,寫出你所學(xué)過的特殊四邊形中是勾股四邊形的兩種圖形的名稱:
矩形、直角梯形

(2)如圖1,已知格點(小正方形的頂點)O(0,0),A(3,0),B(0,4),請你畫出以格點為頂點,OA,OB為勾股邊且對角線相等的勾股四邊形OAMB,并寫出點M的坐標(biāo);
(3)如圖2,以△ABC的邊AB,AC為邊,向三角形外作正方形ABDE及ACFG,連接CE,BG相交于O點,P是線段DE上任意一點.求證:四邊形OBPE是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、我們給出如下定義:若一個四邊形中存在相鄰兩邊的平方和等于一條對角線的平方,則稱這個四邊形為勾股四邊形,這兩條相鄰的邊稱為這個四邊形的勾股邊.
(1)寫出你所知道的特殊四邊形中是勾股四邊形的兩種圖形的名稱
正方形
長方形

(2)如下圖(1),請你在圖中畫出以格點為頂點,OA、OB為勾股邊,且對角線相同的所有勾股四邊形OAMB.
(3)如圖(2),以△ABC邊AB作如圖正三角形ABD,∠CBE=60°,且BE=BC,連接DE、DC,∠DCB=30°.求證:DC2+BC2=AC2,即四邊形ABCD是勾股四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

我們給出如下定義:若一個四邊形ABCD中AC⊥BD,BD平分AC,則稱這個四邊形為箏形四邊形.
(1)小明說:“箏形四邊形一定是菱形”.你認(rèn)為小明的說法是否正確?若正確請說明理由;若不正確,請舉個反例說明.
(3)在箏形ABCD中,AD=CD,AB=BC,若∠ADC=∠ABC,tan∠DAC=1.求證:箏形ABCD是正方形.

查看答案和解析>>

同步練習(xí)冊答案