【題目】已知二次函數(shù)y=x2﹣(2m+1)+( m2﹣1).
(1)求證:不論m取什么實數(shù),該二次函數(shù)圖象與x軸總有兩個交點;
(2)若該二次函數(shù)圖象經(jīng)過點(2m﹣2,﹣2m﹣1),求該二次函數(shù)的表達(dá)式.

【答案】
(1)解:∵b2﹣4ac=(2m+1)2﹣4( m2﹣1)

=(4m2+4m+1)﹣2m2+4

=2m2+4m+5

=2(m+1)2+3>0,

∴不論m取什么實數(shù),方程x2﹣(2m+1)+( m2﹣1)=0都有兩個不相等的實數(shù)根,

∴不論m取什么實數(shù),該二次函數(shù)圖象與x軸總有兩個交點


(2)解:∵該二次函數(shù)圖象經(jīng)過點(2m﹣2,﹣2m﹣1),

∴(2m﹣2)2﹣(2m+1)(2m﹣2)+( m2﹣1)=﹣2m﹣1,

解得:m1=2,m2=6,

當(dāng)m=2時,該二次函數(shù)的表達(dá)式為:y=x2﹣5x+1,

當(dāng)m=6時,該二次函數(shù)的表達(dá)式為:y=x2﹣13x+17


【解析】(1)首先求出b2﹣4ac的表達(dá)式,進(jìn)而利用配方法求出其符號,進(jìn)而得出答案;(2)將已知點代入進(jìn)而求出m的值得出答案.
【考點精析】關(guān)于本題考查的拋物線與坐標(biāo)軸的交點,需要了解一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標(biāo).因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當(dāng)b2-4ac>0時,圖像與x軸有兩個交點;當(dāng)b2-4ac=0時,圖像與x軸有一個交點;當(dāng)b2-4ac<0時,圖像與x軸沒有交點.才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0),B(0,﹣ ),C(2,0),其對稱軸與x軸交于點D

(1)求二次函數(shù)的表達(dá)式及其頂點坐標(biāo);
(2)若P為y軸上的一個動點,連接PD,則 PB+PD的最小值為
(3)M(x,t)為拋物線對稱軸上一動點
①若平面內(nèi)存在點N,使得以A,B,M,N為頂點的四邊形為菱形,則這樣的點N共有 個;
②連接MA,MB,若∠AMB不小于60°,求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形ABCD是平行四邊形,從下列條件:①AB=BC,②∠ABC=90°, ③AC=BD,④AC⊥BD中,再選兩個做為補充,使ABCD變?yōu)檎叫危旅嫠姆N組
合,錯誤的是(

A.①②
B.①③
C.②③
D.②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B兩個轉(zhuǎn)盤分別被平均分成三個、四個扇形,分別轉(zhuǎn)動A盤、B盤各一次.轉(zhuǎn)動過程中,指針保持不動,如果指針恰好指在分割線上,則重轉(zhuǎn)一次,直到指針指向一個數(shù)字所在的區(qū)域為止.請用列表或畫樹狀圖的方法,求兩個轉(zhuǎn)盤停止后指針?biāo)竻^(qū)域內(nèi)的數(shù)字之積小于6的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+c的部分圖象如圖所示,若y<0,則x的取值范圍是(
A.﹣1<x<4
B.x<﹣1或x>3
C.x<﹣1或x>4
D.﹣1<x<3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=4,BC=3,以邊AB的中點O為圓心,作半圓與AC相切,點P,Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最大值與最小值的和是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y=ax2+bx+2的圖象經(jīng)過點A(﹣1,0),B(4,0)兩點,與y軸交于點C.
(1)求拋物線的解析式;
(2)若點Q(m,m﹣1)是拋物線上位于第一象限內(nèi)的點,P是線段AB上的一個動點(不與A、B重合),經(jīng)過點P分別作PD∥BQ交AQ于點D,PE∥AQ交BQ于點E. ①判斷四邊形PDQE的形狀;并說明理由;
②連接DE,求出線段DE的長度范圍;
③如圖2,在拋物線上是否存在一點F,使得以P、F、A、C為頂點的四邊形為平行四邊形?若存在,求出點F和點P坐標(biāo);若不存在,說明理由.
(3)當(dāng)r=2 時,在P1(0,2),P2(﹣2,4),P3(4 ,2),P4(0,2﹣2 )中,求可以成為正方形ABCD的“等距圓”的圓心的坐標(biāo)?
(4)若點P坐標(biāo)為(﹣3,6),則當(dāng)⊙P的半徑r為多長時,⊙P是正方形ABCD的“等距圓”.試判斷此時⊙P與直線AC的位置關(guān)系?并說明理由.
(5)如圖2,在正方形ABCD所在平面直角坐標(biāo)系xOy中,正方形EFGH的頂點F的坐標(biāo)為(6,2),頂點E、H在y軸上,且點H在點E的上方.若⊙P同時為上述兩個正方形的“等距圓”,且與BC所在直線相切,求⊙P的圓心P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“為了安全,請勿超速”.如圖,一條公路建成通車,在某直線路段MN限速60千米/小時,為了檢測車輛是否超速,在公路MN旁設(shè)立了觀測點C,從觀測點C測得一小車從點A到達(dá)點B行駛了5秒鐘,已知∠CAN=45°,∠CBN=60°,BC=200米,此車超速了嗎?請說明理由.(參考數(shù)據(jù): ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=ax﹣a(a為常數(shù))的圖象與y軸相交于點A,與函數(shù) 的圖象相交于點B(m,1).
(1)求點B的坐標(biāo)及一次函數(shù)的解析式;
(2)若點P在y軸上,且△PAB為直角三角形,請直接寫出點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案