如圖,在四邊形ABCD中,一組對邊AB=CD,另一組對邊AD≠BC,分別取AD、BC的中點(diǎn)M、N,連接MN.則AB與MN的關(guān)系是


  1. A.
    AB=MN
  2. B.
    AB>MN
  3. C.
    AB<MN
  4. D.
    上述三種情況均可能出現(xiàn)
B
分析:連接BD,取其中點(diǎn)P,連接PN,PM,根據(jù)三角形中位線定理可分別求得PM,PN的長,再根據(jù)三角形三邊關(guān)系不難求得AB與MN之間的數(shù)量關(guān)系.
解答:解:連接BD,取其中點(diǎn)P,連接PN,PM.
∵點(diǎn)P,M,N分別是BD,AD,BC的中點(diǎn),
∴PM=AB,PN=CD,
∵AB=CD,
∴PM+PN=AB,
∵PM+PN>MN,
∴AB>MN.
故選B.
點(diǎn)評:此題主要考查三角形三邊關(guān)系及三角形中位線定理的綜合運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•赤峰)如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點(diǎn)D從點(diǎn)C出發(fā)沿CA方向以4cm/秒的速度向點(diǎn)A勻速運(yùn)動,同時(shí)點(diǎn)E從點(diǎn)A出發(fā)沿AB方向以2cm/秒的速度向點(diǎn)B勻速運(yùn)動,當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也隨之停止運(yùn)動.設(shè)點(diǎn)D、E運(yùn)動的時(shí)間是t秒(0<t≤15).過點(diǎn)D作DF⊥BC于點(diǎn)F,連接DE,EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時(shí),△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠BAC=90°,將△ABC沿線段BC向右平移得到△DEF,使CE=AE,連結(jié)AD、AE、CD,則下列結(jié)論:①AD∥BE且AD=BE;②∠ABC=∠DEF;③ED⊥AC;④四邊形AECD為菱形,其中正確的共有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.
求證:AB∥CD,AD∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:浙江省同步題 題型:證明題

已知:如圖,在四邊形ABC中,AD=BC,AB=CD.求證:AB∥CD,AD∥BC.

查看答案和解析>>

同步練習(xí)冊答案