如圖,已知斜坡AB長60米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.(請將下面2小題的結(jié)果都精確到0.1米,參考數(shù)據(jù):≈1.732).
(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,則平臺DE的長最多為______米;
(2)一座建筑物GH距離坡角A點27米遠(即AG=27米),小明在D點測得建筑物頂部H的仰角(即∠HDM)為30°.點B、C、A、G、H在同一個平面內(nèi),點C、A、G在同一條直線上,且HG⊥CG,問建筑物GH高為多少米?

【答案】分析:(1)根據(jù)題意得出,∠BEF最大為45°,當∠BEF=45°時,EF最短,此時ED最長,進而得出EF的長,即可得出答案;
(2)利用在Rt△DPA中,DP=AD,以及PA=AD•cos30°進而得出DM的長,利用HM=DM•tan30°得出即可.
解答:解:(1)∵修建的斜坡BE的坡角(即∠BEF)不大于45°,
∴∠BEF最大為45°,
當∠BEF=45°時,EF最短,此時ED最長,
∵∠DAC=∠BDF=30°,AD=BD=30,
∴BF=EF=BD=15,
DF=15
故:DE=DF-EF=15(-1)≈11.0;

(2)過點D作DP⊥AC,垂足為P.
在Rt△DPA中,DP=AD=×30=15,
PA=AD•cos30°=×30=15
在矩形DPGM中,MG=DP=15,DM=PG=15+27,
在Rt△DMH中,
HM=DM•tan30°=×(15+27)=15+9
GH=HM+MG=15+15+9≈45.6.
答:建筑物GH高約為45.6米.
點評:此題主要考查了解直角三角形中坡角問題,根據(jù)圖象構(gòu)建直角三角形,進而利用銳角三角函數(shù)得出是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•蘇州)如圖,已知斜坡AB長60米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.(請將下面2小題的結(jié)果都精確到0.1米,參考數(shù)據(jù):
3
≈1.732).
(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,則平臺DE的長最多為
11.0
11.0
米;
(2)一座建筑物GH距離坡角A點27米遠(即AG=27米),小明在D點測得建筑物頂部H的仰角(即∠HDM)為30°.點B、C、A、G、H在同一個平面內(nèi),點C、A、G在同一條直線上,且HG⊥CG,問建筑物GH高為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知斜坡AB長60米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.(下面兩小題的結(jié)果都精確到0.1米,參考數(shù)據(jù):
3
≈1.732)
(1)若修建的斜坡BE的坡度為1:0.8,則平臺DE的長為
14.0
14.0
米;
(2)斜坡前的池塘內(nèi)有一座建筑物GH,小明在平臺E處測得建筑物頂部H的仰角(即∠HEM)為30°,測得建筑物頂部H在池塘中倒影H′的俯角為45°(即∠H′EM),測得點B、C、A、G、H、H′在同一個平面內(nèi),點C、A、G在同一條直線上,且HG⊥CG,求建筑物GH的高和AG的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(江蘇蘇州卷)數(shù)學(帶解析) 題型:解答題

如圖,已知斜坡AB長60米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.(請將下面2小題的結(jié)果都精確到0.1米,參考數(shù)據(jù)).
【小題1】若修建的斜坡BE的坡角(即∠BAC)不大于45°,則平臺DE的長最多為 ▲ 米;
【小題2】一座建筑物GH距離坡腳A點27米遠(即AG=27米),小明在D點測得建筑物頂部H的仰角(即∠HDM)為30°.點B、C、A、G、H在同一個平面上,點C、A、G在同一條直線上,且HG⊥CG,問建筑物GH高為多少米?

查看答案和解析>>

科目:初中數(shù)學 來源:2013-2014學年浙江寧波城區(qū)五校聯(lián)考初三第一學期12月月考數(shù)學試卷(解析版) 題型:解答題

如圖,已知斜坡AB長60米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.

(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,則平臺DE的長最多為多少米?

(2)一座建筑物GH距離坡角A點27米遠(即AG=27米),小明在D點測得建筑物頂部H的仰角(即∠DHM)為30°,點B、C、A、G、H在同一個平面內(nèi),點C、A、G在同一條直線上,且HG⊥CG,問建筑物GH高為多少米?

 

查看答案和解析>>

科目:初中數(shù)學 來源:2012年初中畢業(yè)升學考試(江蘇蘇州卷)數(shù)學(解析版) 題型:解答題

如圖,已知斜坡AB長60米,坡角(即∠BAC)為30°,BC⊥AC,現(xiàn)計劃在斜坡中點D處挖去部分坡體(用陰影表示)修建一個平行于水平線CA的平臺DE和一條新的斜坡BE.(請將下面2小題的結(jié)果都精確到0.1米,參考數(shù)據(jù)).

1.若修建的斜坡BE的坡角(即∠BAC)不大于45°,則平臺DE的長最多為  ▲  米;

2.一座建筑物GH距離坡腳A點27米遠(即AG=27米),小明在D點測得建筑物頂部H的仰角(即∠HDM)為30°.點B、C、A、G、H在同一個平面上,點C、A、G在同一條直線上,且HG⊥CG,問建筑物GH高為多少米?

 

查看答案和解析>>

同步練習冊答案