24、已知一角的兩邊與另一個角的兩邊平行,分別結(jié)合下圖,試探索這兩個角之間的關(guān)系,并證明你的結(jié)論.
(1)如圖1,AB∥EF,BC∥DE.∠1與∠2的關(guān)系是:
∠1=∠2
;
(2)如圖2,AB∥EF,BC∥DE.∠1與∠2的關(guān)系是:
∠1+∠2=180°
;
(3)經(jīng)過上述證明,我們可以得到一個真命題:如果
一個角的兩邊分別平行與另一個角的兩邊
,那么
這兩個角相等或互補(bǔ)

分析:(1)根據(jù)兩直線平行,同位角相等,可求出∠1=∠2;
(2)根據(jù)兩直線平行,同位角相等,及同旁內(nèi)角互補(bǔ)可求出∠1+∠2=180°.
(3)由(1)(2)可得出結(jié)論.
解答:解:(1)如圖(1)AB∥EF,BC∥DE.∠1與∠2的關(guān)系是:∠1=∠2.
證明:如圖(1)
∵AB∥EF,BC∥DE,
∴∠1=∠3,∠2=∠3(兩直線平行,同位角相等),
∴∠1=∠2(等量代換);(4分)

(2)如圖(2)AB∥EF,BC∥DE.∠1與∠2的關(guān)系是:∠1+∠2=180°,
證明:∵AB∥EF,BC∥DE,
∴∠2=∠3(兩直線平行,同位角相等),
∠1+∠3=180°(兩直線平行,同旁內(nèi)角互補(bǔ)),
∴∠1+∠2=180°(等量代換);(8分)

(3)經(jīng)過上述證明,我們可以得到一個真命題:如果一個角的兩邊與另一個角的兩邊分別平行,那么這兩個角相等或互補(bǔ).
點評:本題考查的是平行線的性質(zhì),應(yīng)用的知識點為:兩直線平行,同位角相等;兩直線平行,同旁內(nèi)角互補(bǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

18、已知一角的兩邊與另一個角的兩邊平行,分別結(jié)合下圖,試探索這兩個角之間的關(guān)系,并證明你的結(jié)論.
(1)AB∥EF,BC∥DE.∠1與∠2的關(guān)系是:
∠1=∠2


(2)AB∥EF,BC∥DE.∠1與∠2的關(guān)系是:
∠1+∠2=180°


(3)經(jīng)過上述證明,我們可以得到一個真命題:如果
一個角的兩邊與另一個角的兩邊分別平行
,那么
這兩個角相等或互補(bǔ)

(4)若兩個角的兩邊互相平行,且一個角比另一個角的2倍少30°,則這兩個角分別是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一角的兩邊與另一個角的兩邊平行,結(jié)合圖形,試探索這兩個角之間的數(shù)量關(guān)系.
(1)如圖①,AB∥EF,BC∥DE,則∠1與∠2的數(shù)量關(guān)系是
∠1=∠2
∠1=∠2

(2)如圖②,AB∥EF,BC∥DE,則∠1與∠2的數(shù)量關(guān)系是
∠1+∠2=180°
∠1+∠2=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知一角的兩邊與另一個角的兩邊平行,分別結(jié)合下圖,試探索這兩個角之間的關(guān)系,并證明你的結(jié)論.
(1)如圖1,AB∥EF,BC∥DE.∠1與∠2有什么關(guān)系,為什么?
(2)如圖2,AB∥EF,BC∥DE.∠1與∠2有什么關(guān)系,為什么?
(3)經(jīng)過上述證明,我們可以得到一個真命題:
如果一角的兩邊與另一個角的兩邊平行,那么這兩個角相等或互補(bǔ)
如果一角的兩邊與另一個角的兩邊平行,那么這兩個角相等或互補(bǔ)

(4)∠A的兩邊分別平行于∠B的兩邊,∠A=80°,則∠B=
80°或100°
80°或100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知一角的兩邊與另一個角的兩邊平行,分別結(jié)合下圖,試探索這兩個角之間的關(guān)系,并證明你的結(jié)論.
(1)如圖1,ABEF,BCDE.∠1與∠2的關(guān)系是:______;
(2)如圖2,ABEF,BCDE.∠1與∠2的關(guān)系是:______;
(3)經(jīng)過上述證明,我們可以得到一個真命題:如果______,那么______.

精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案