精英家教網 > 初中數學 > 題目詳情

如圖,矩形ABCD中,對角線AC、BD交于點O,過O的直線分別交AD、BC于點E、F,已知AD=4cm,圖中陰影部分的面積總和為6cm2,對角線AC長為________cm.

5
分析:根據矩形的性質,采用勾股定理求解即可.
解答:∵圖中陰影部分的面積總和為6cm2,AD=4cm,則AD×CD=×4×CD=6,CD=3,在直角三角形ACD中AD=4,CD=3,由勾股定理得AC=5,
∴對角線AC長為5cm.
故答案為5.
點評:本題主要考查矩形的性質、勾股定理,是基礎知識比較簡單.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網如圖,矩形ABCD中,AB=6,BC=8,M是BC的中點,DE⊥AM,E是垂足,則△ABM的面積為
 
;△ADE的面積為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,矩形ABCD中,AD=a,AB=b,要使BC邊上至少存在一點P,使△ABP、△APD、△CDP兩兩相似,則a、b間的關系式一定滿足( 。
A、a≥
1
2
b
B、a≥b
C、a≥
3
2
b
D、a≥2b

查看答案和解析>>

科目:初中數學 來源: 題型:

7、如圖,矩形ABCD中,AE⊥BD,垂足為E,∠DAE=2∠BAE,則∠CAE=
30
°.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2008•懷柔區(qū)二模)已知如圖,矩形ABCD中,AB=3cm,BC=4cm,E是邊AD上一點,且BE=ED,P是對角線上任意一點,PF⊥BE,PG⊥AD,垂足分別為F、G.則PF+PG的長為
3
3
cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

(2002•西藏)已知:如圖,矩形ABCD中,E、F是AB邊上兩點,且AF=BE,連結DE、CF得到梯形EFCD.
求證:梯形EFCD是等腰梯形.

查看答案和解析>>

同步練習冊答案