(2010•煙臺(tái))如圖,△ABC中AB=AC,BC=6,點(diǎn)D位BC中點(diǎn),連接AD,AD=4,AN是△ABC外角∠CAM的平分線,CE⊥AN,垂足為E.
(1)試判斷四邊形ADCE的形狀并說明理由.
(2)將四邊形ADCE沿CB以每秒1個(gè)單位長度的速度向左平移,設(shè)移動(dòng)時(shí)間為t(0≤t≤6)秒,平移后的四邊形A’D’C’E’與△ABC重疊部分的面積為S,求S關(guān)于t的函數(shù)表達(dá)式,并寫出相應(yīng)的t的取值范圍.

【答案】分析:(1)根據(jù)三線合一可得∠ADC=90°∠BAD=∠CAD,根據(jù)已知可得:∠DAE=∠CEA=90°,即可求得四邊形ADCE是矩形;
(2)平移過程中有兩種不同情況:當(dāng)0≤t<3時(shí),重疊部分為五邊形;當(dāng)3≤t≤6時(shí),重疊部分為三角形.根據(jù)多邊形的面積的求解方法即可求得.
解答:解:(1)∵AB=AC,D為BC中點(diǎn),
∴AD⊥BC,∠BAD=∠CAD,
又∵AE平分∠CAM,
∴∠MAE=∠CAE,
∴∠DAE=∠DAC+∠CAE=×180°=90°,
∴∠AEC=∠DAE=∠ADC=90°,
∴四邊形ADCE為矩形.

(2)平移過程中有兩種不同情況:
①當(dāng)0≤t<3時(shí),重疊部分為五邊形,
設(shè)C′E′與AC交于點(diǎn)P,A′D′與AB交于點(diǎn)Q,
∴E′P=AE′=(3-t)A′Q=A′A=t,
∴S=S矩形A′D′CE′-S△AA′Q-S△AE′P
=3×4-AA′•A′Q-AE′•E′P
=12-t•t-(3-t)•=-+4t+6;

②當(dāng)3≤t≤6時(shí),重疊部分為三角形,
設(shè)AB與C′E′交于點(diǎn)R,
∵C′E′∥AD,
∴△BC′R∽△BDA,
==
∵BC′=6-t,
∴C′R=(6-t),
∴S=S△BC′R=BC′•C′R
=(6-t)•(6-t)
=(6-t)2,
∴S=
點(diǎn)評(píng):此題考查了矩形的判定方法與三角形的三線合一的性質(zhì),還考查了多邊形的面積的求解方法,解題時(shí)要注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《四邊形》(07)(解析版) 題型:解答題

(2010•煙臺(tái))如圖,已知拋物線y=x2+bx-3a過點(diǎn)A(1,0),B(0,-3),與x軸交于另一點(diǎn)C.
(1)求拋物線的解析式;
(2)若在第三象限的拋物線上存在點(diǎn)P,使△PBC為以點(diǎn)B為直角頂點(diǎn)的直角三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,在拋物線上是否存在一點(diǎn)Q,使以P,Q,B,C為頂點(diǎn)的四邊形為直角梯形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2010•煙臺(tái))如圖,已知拋物線y=x2+bx-3a過點(diǎn)A(1,0),B(0,-3),與x軸交于另一點(diǎn)C.
(1)求拋物線的解析式;
(2)若在第三象限的拋物線上存在點(diǎn)P,使△PBC為以點(diǎn)B為直角頂點(diǎn)的直角三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,在拋物線上是否存在一點(diǎn)Q,使以P,Q,B,C為頂點(diǎn)的四邊形為直角梯形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省煙臺(tái)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•煙臺(tái))如圖,已知拋物線y=x2+bx-3a過點(diǎn)A(1,0),B(0,-3),與x軸交于另一點(diǎn)C.
(1)求拋物線的解析式;
(2)若在第三象限的拋物線上存在點(diǎn)P,使△PBC為以點(diǎn)B為直角頂點(diǎn)的直角三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,在拋物線上是否存在一點(diǎn)Q,使以P,Q,B,C為頂點(diǎn)的四邊形為直角梯形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的平移》(02)(解析版) 題型:解答題

(2010•煙臺(tái))如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,1),B(-1,1),C(-1,3).
(1)畫出△ABC關(guān)于x軸對(duì)稱的△A1B1C1,并寫出點(diǎn)C1的坐標(biāo);
(2)畫出△ABC繞原點(diǎn)O順時(shí)針方向旋轉(zhuǎn)90°后得到的△A2B2C2,并寫出點(diǎn)C2的坐標(biāo);
(3)將△A2B2C2平移得到△A3B3C3,使點(diǎn)A2的對(duì)應(yīng)點(diǎn)是A3,點(diǎn)B2的對(duì)應(yīng)點(diǎn)是B3,點(diǎn)C2的對(duì)應(yīng)點(diǎn)是C3(4,-1),在坐標(biāo)系中畫出△A3B3C3,并寫出點(diǎn)A3,B3的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年山東省煙臺(tái)市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2010•煙臺(tái))如圖,△ABC中,點(diǎn)D在線段BC上,且△ABC∽△DBA,則下列結(jié)論一定正確的是( )

A.AB2=BC•BD
B.AB2=AC•BD
C.AB•AD=BD•BC
D.AB•AD=AD•CD

查看答案和解析>>

同步練習(xí)冊(cè)答案