【題目】如圖,已知直線y=x+4與兩坐標(biāo)軸分別交于A、B兩點(diǎn),⊙C的圓心坐標(biāo)為 (2,O),半徑為2,若D是⊙C上的一個(gè)動(dòng)點(diǎn),線段DA與y軸交于點(diǎn)E,則△ABE面積的最小值和最大值分別是   

【答案】8﹣2和8+2

【解析】首先由一次數(shù)解析式求出OA、OB的長,而△ABE中,BE邊上的高是OA,且OA為定值,所以求△ABE面積的最小值和最大值,轉(zhuǎn)化為求BE的最小值和最大值。過點(diǎn)A作⊙C的兩條切線AD、AD′,當(dāng)動(dòng)點(diǎn)運(yùn)動(dòng)到D點(diǎn)時(shí),BE最小,即△ABE面積最。划(dāng)動(dòng)點(diǎn)運(yùn)動(dòng)到D′點(diǎn)時(shí),BE最大,即△ABE面積最大。最后根據(jù)比例求出BE 、BE′的值,進(jìn)而求出△ABE面積的最小值和最大值.

解:由y=x+4得:

當(dāng)x=0時(shí),y=4,當(dāng)y=0時(shí),x=﹣4,

∴OA=4,OB=4,

∵△ABE的邊BE上的高是OA,

∴△ABE的邊BE上的高是4,

∴要使△ABE的面積最大或最小,只要BE取最大值或最小值即可,

過A作⊙C的兩條切線,如圖,

當(dāng)動(dòng)點(diǎn)運(yùn)動(dòng)到D點(diǎn)時(shí),BE最小,即△ABE面積最;

當(dāng)動(dòng)點(diǎn)運(yùn)動(dòng)到D′點(diǎn)時(shí),BE最大,即△ABE面積最大;

∵x軸⊥y軸,OC為半徑,

∴EE′是⊙C切線,

∵AD′是⊙C切線,

∴OE′=E′D′,

設(shè)E′O=E′D′=x,

∵AC=4+2=6,CD′=2,AD′是切線,

∴∠AD′C=90°,由勾股定理得:AD′=4,

∴sin∠CAD′==,

=

解得:x=,

∴BE′=4+,BE=4﹣,

∴△ABE的最小值是×(4﹣)×4=8﹣2

最大值是:×(4+)×4=8+2,

故答案為:8﹣2和8+2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面給出的四個(gè)命題中,假命題是(  )

A. 如果a=3,那么|a|=3

B. 如果x2=4,那么x=±2

C. 如果(a-1)(a+2)=0,那么a-1=0a+2=0

D. 如果(a-1)2+(b+2)2=0,那么a=1b=-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛汽車以一定的速度勻速行駛,行駛的路程隨時(shí)間的變化而變化,在這一變化過程中,自變量是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程x2﹣2x+k=0有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是(
A.k<1
B.k>1
C.k<﹣1
D.k>﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一個(gè)數(shù)的絕對值是4,則這個(gè)數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AB=6,點(diǎn)E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連結(jié)AG、CF.下列結(jié)論:①△ABG≌△AFG;②∠EAG=45°;③BG=GC;④AG∥CF.其中正確結(jié)論的個(gè)數(shù)是( )

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=x3+2,不畫圖象,解答下列問題:

1)判斷A02)、B2,0)、C, 1)三點(diǎn)是否在該函數(shù)圖象上,說明理由;

2)若點(diǎn)Pa,0)、Q, b)都在該函數(shù)的圖象上,試求a、b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是我國古代數(shù)學(xué)家楊輝最早發(fā)現(xiàn)的圖形,稱為“楊輝三角”.他的發(fā)現(xiàn)比西方要早五百年左右,由此可見我國古代數(shù)學(xué)的成就是非常值得中華民族自豪的!“楊輝三角”中有許多規(guī)律,如其中每一行的數(shù)字正好對應(yīng)了(a+b)n(n為非負(fù)整數(shù))的展開式中a按次數(shù)從大到小排列的項(xiàng)的系數(shù).例如,(a+b)2=a2+2ab+b2,展開式中的系數(shù)1、2、1恰好對應(yīng)圖中第三行的數(shù)字;再如,(a+b)3=a3+3a2b+3ab2+b3,展開式中的系數(shù)1、3、3、1恰好對應(yīng)圖中第四行的數(shù)字.請認(rèn)真觀察此圖,寫出(a+b)4的展開式,(a+b)4_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)下列證明過程填空:

如圖,BDAC,EFACD、F分別為垂足,且∠1=∠4,求證:∠ADG=∠C

證明:∵BDAC,EFAC

∴∠2=∠3=90°

BDEF ( )

∴∠4=_____ ( )

∵∠1=∠4

∴∠1=_____

DGBC ( )

∴∠ADG=∠C( )

查看答案和解析>>

同步練習(xí)冊答案