一個(gè)奇數(shù)是2n-1,則和它相鄰的兩個(gè)奇數(shù)的和是______.
奇數(shù)2n-1前面的奇數(shù)是;2n-1-2,后面的奇數(shù)是:2n-1+2,
∴(2n-1+2)+(2n-1-2),
=4n-2,
故答案為:4n-2,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、一個(gè)奇數(shù)是2n-1,則和它相鄰的兩個(gè)奇數(shù)的和是
4n-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

探索題:
(1)設(shè)n表示任意一個(gè)整數(shù),則用含有n的代數(shù)式表示任意一個(gè)偶數(shù)為
2n
2n
,用含有n的代數(shù)式表示任意一個(gè)奇數(shù)為
2n+1或2n-1
2n+1或2n-1
;
(2)用舉例驗(yàn)證的方法探索:任意兩個(gè)整數(shù)的和與這兩個(gè)數(shù)的差是否同時(shí)為奇數(shù)或同時(shí)為偶數(shù)?你的結(jié)論是
(填“是”或“否”);
(3)設(shè)a、b是任意的兩個(gè)整數(shù),試用“用字母表示數(shù)”的方法并分情況來(lái)說(shuō)明a+b和a-b是否“同奇”或“同偶”?并進(jìn)一步得出一般性的結(jié)論.
例:①設(shè)a=2m,b=2n.
則a+b=2m+2n=2(m+n);a-b=2m-2n=2(m-n);
此時(shí)a+b和a-b同時(shí)為偶數(shù).
請(qǐng)你仿照以上的方法并考慮其余所有可能的情況加以計(jì)算和說(shuō)明;
(4)以(3)的結(jié)論為基礎(chǔ)進(jìn)一步探索:-a+b、-a-b、a+b、a-b是否“同奇”“同偶”?
(5)應(yīng)用第(2)、(3)、(4)的結(jié)論完成:在2014個(gè)自然數(shù)1,2,3,…,2013,2014的每一個(gè)數(shù)的前面任意添加“+”或“-”,則其代數(shù)和一定是
奇數(shù)
奇數(shù)
(填“奇數(shù)”或“偶數(shù)”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)奇數(shù)的平方差,那么稱這個(gè)正整數(shù)為“奇特?cái)?shù)”.例如:8=32-12,16=52-32,24=72-52;則8、16、24這三個(gè)數(shù)都是奇特?cái)?shù).
(1)32和2012這兩個(gè)數(shù)是奇特?cái)?shù)嗎?若是,表示成兩個(gè)連續(xù)奇數(shù)的平方差形式.
(2)設(shè)兩個(gè)連續(xù)奇數(shù)是2n-1和2n+1(其中n取正整數(shù)),由這兩個(gè)連續(xù)奇數(shù)構(gòu)造的奇特?cái)?shù)是8的倍數(shù)嗎?為什么?
(3)如圖所示,拼疊的正方形邊長(zhǎng)是從1開(kāi)始的連續(xù)奇數(shù)…,按此規(guī)律拼疊到正方形ABCD,其邊長(zhǎng)為2013,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

一個(gè)奇數(shù)是2n-1,則和它相鄰的兩個(gè)奇數(shù)的和是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案