如圖,在平面直角坐標(biāo)系中,四邊形OABC是矩形,點B的坐標(biāo)為(4,3).平行于對角線AC的直線m從原點O出發(fā),沿x軸正方向以每秒1個單位長度的速度運動,設(shè)直線m與矩形OABC的兩邊分別交于點M、N,直線m運動的時間為t(秒).
(1)點A的坐標(biāo)是:_________,點C的坐標(biāo)是:__________;
(2)設(shè)△OMN的面積為S,求S與t的函數(shù)關(guān)系式;
(3)探求(2)中得到的函數(shù)S有沒有最大值?若有,求出最大值;若沒有,說明理由.
解:(1)(4,0)、(0,3)
(2)當(dāng)0<t≤4時,OM=t.
由△OMN∽△OAC,得,
∴ ON=,S=×OM×ON=
當(dāng)4<t<8時,如圖,

∵ OD=t,∴ AD= t-4.
由△DAM∽△AOC,可得AM=
而△OND的高是3.
S=△OND的面積-△OMD的面積
=×t×3-×t×     
=.     
(3) 有最大值.
方法一:當(dāng)0<t≤4時,
∵ 拋物線S=的開口向上,在對稱軸t=0的右邊, S隨t的增大而增大,
∴ 當(dāng)t=4時,S可取到最大值=6;
當(dāng)4<t<8時,
∵ 拋物線S=的開口向下,它的頂點是(4,6),
∴ S<6.
綜上,當(dāng)t=4時,S有最大值6.
方法二:∵ S= 
∴ 當(dāng)0<t<8時,畫出S與t的函數(shù)關(guān)系圖像,如圖所示.

顯然,當(dāng)t=4時,S有最大值6.
(1)根據(jù)B點的坐標(biāo)即可求出A、C的坐標(biāo);
(2)本問要分類進行討論:
①當(dāng)直線m在AC下方或與AC重合時,即當(dāng)0<t≤4時,根據(jù)平行得到兩對同位角的相等可證△OMN∽△OAC,用兩三角形的相似比求出面積比,即可得出S與t的函數(shù)關(guān)系式;
②當(dāng)直線m在AC上方時,即當(dāng)4<t<8時,由平行得到一對同位角相等,再由一對直角的相等得到△DAM∽△AOC,根據(jù)相似得比例,由OD,AD表示出AM的長,進而得到BM的長,再由MN∥AC,得到兩對同位角的相等,從而得到△BMN∽△BAC,由相似得比例BN的長,從而得到CN的長,然后分別表示出各個三角形的面積,可用矩形OABC的面積-三角形BMN的面積-三角形OCN的面積-三角形OAM的面積來求得
(3)根據(jù)(2)得出的函數(shù)的性質(zhì)和自變量的取值范圍即可求出面積S的最大值及對應(yīng)的t的值.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:關(guān)于的方程有兩個不相等的實數(shù)根.
(1)求的取值范圍;
(2)拋物線軸交于、兩點.若且直線:經(jīng)過點,求拋物線的函數(shù)解析式;
(3)在(2)的條件下,直線:繞著點旋轉(zhuǎn)得到直線,設(shè)直線軸交于點,與拋物線交于點不與點重合),當(dāng)時,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線向上平移3個單位,再向左平移4個單位,得到的拋物線的解析式是    。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+2x+c的圖象與x軸交于點A(3,0)和點C,與y軸交于點B(0,3).

(1)求拋物線的解析式;
(2)在拋物線的對稱軸上找一點D,使得點D到點B、C的距離之和最小,并求出點D的坐標(biāo);
(3)在第一象限的拋物線上,是否存在一點P,使得△ABP的面積最大?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓P的圓心在反比例函數(shù)圖象上,并與x軸相交于A、B兩點. 且始終與y軸相切于定點C(0,1).

(1)求經(jīng)過A、B、C三點的二次函數(shù)圖象的解析式;
(2)若二次函數(shù)圖象的頂點為D,問當(dāng)k為何值時,四邊形ADBP為菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知點(3,),(4,), (5,)在函數(shù)y=2x2+8x+7的圖象上,則y1,y2,y3的大小關(guān)系是(  )
A.y1>y2>y3B.y2> y1> y3C.y2>y3> y1D.y3> y2> y1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0  ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時,y>0其中正確的個數(shù)為【   】
A.1B.2 C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

開口向下的拋物線的對稱軸經(jīng)過點(-1,3),則m=        

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線軸的一個交點為,則代數(shù)式的值為()
A.2010B.2012 C.2013D.2014

查看答案和解析>>

同步練習(xí)冊答案