【題目】如圖,點P是∠AOB的角平分線上一點,過點P作PC∥OA交OB于點C,PD⊥OA于點D.若OC=5,PD=4,則OP= .
【答案】4
【解析】解:如圖,過點P作PE⊥OB于E,
∵OP是∠AOB的角平分線,PD⊥OA
∴PE=PD=4,
∵OP是∠AOB的角平分線,
∴∠AOP=∠BOP,
∵PC∥OA,
∴∠OPC=∠AOP,
∴∠BOP=∠OPC,
∴PC=OC=5,
在Rt△PCE中,CE= = =3,
∴OE=OC+CE=5+3=8,
在Rt△POE中,OP= = =4 .
所以答案是:4 .
【考點精析】認真審題,首先需要了解角平分線的性質(zhì)定理(定理1:在角的平分線上的點到這個角的兩邊的距離相等; 定理2:一個角的兩邊的距離相等的點,在這個角的平分線上),還要掌握勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2)的相關知識才是答題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△EFG≌△NMH,∠F與∠M是對應角.
(1)寫出相等的線段與角.
(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列等式成立的是( )
A.(-x-1)2=(x-1)2B.(-x-1)2=(x+1)2
C.(-x+1)2=(x+1)2D.(x+1)2=(x-1)2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC中,AB=4,AC=6,AD平分∠BAC,且BD⊥AD于D,交AC于F,E是BC的中點,連接DE.求:DE的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC和△DEF中,AB=4,∠A=35°,∠B=70°,DE=4,∠D=_____°,∠E=70°,根據(jù)_____判定△ABC≌△DEF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com