已知直線(xiàn)y=數(shù)學(xué)公式數(shù)學(xué)公式的交點(diǎn)在第四象限內(nèi).
(1)求k的取值范圍.
(2)若k為非負(fù)整數(shù),點(diǎn)A的坐標(biāo)為(2,0),在直線(xiàn)y=數(shù)學(xué)公式上是否存在一點(diǎn)P,使△PAO是以O(shè)A為底的等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

解:(1)聯(lián)立,解得,
∵兩直線(xiàn)交點(diǎn)在第四象限,
,解得-4<k<1;

(2)存在.
∵k為非負(fù)整數(shù)且-4<k<1,
∴k=0,直線(xiàn)y=解析式化為y=x-3,
而線(xiàn)段OA的垂直平分線(xiàn)為x=1,
當(dāng)x=1時(shí),y=x-3=-2,
∴P(1,-2).
分析:(1)聯(lián)立兩直線(xiàn)解析式求交點(diǎn)坐標(biāo),再根據(jù)第四象限點(diǎn)的坐標(biāo)特點(diǎn)求k的取值范圍;
(2)存在.根據(jù)若k為非負(fù)整數(shù)及k的取值范圍,確定k的值,作線(xiàn)段OA的垂直平分線(xiàn)與直線(xiàn)y=相交,求交點(diǎn)坐標(biāo)即可.
點(diǎn)評(píng):本題考查了一次函數(shù)的綜合運(yùn)用,等腰三角形的判斷及兩直線(xiàn)交點(diǎn)坐標(biāo)的求法.關(guān)鍵是列方程組求交點(diǎn)坐標(biāo),根據(jù)交點(diǎn)所在的象限確定k的取值范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

精英家教網(wǎng)九年義務(wù)教育三年制初級(jí)中學(xué)教科書(shū)代數(shù)第三冊(cè)中,有以下幾段文字:“對(duì)于坐標(biāo)平面內(nèi)任意一點(diǎn)M,都有唯一的一對(duì)有序?qū)崝?shù)(x,y)和它對(duì)應(yīng);對(duì)于任意一對(duì)有序?qū)崝?shù)(x,y),在坐標(biāo)平面內(nèi)都有唯一的一點(diǎn)M和它對(duì)應(yīng),也就是說(shuō),坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的.”“一般地,對(duì)于一個(gè)函數(shù),如果把自變量x與函數(shù)y的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn),這些點(diǎn)所組成的圖形,就是這個(gè)函數(shù)的圖象.”“實(shí)際上,所有一次函數(shù)的圖象都是一條直線(xiàn).”“因?yàn)閮牲c(diǎn)確定一條直線(xiàn),所以畫(huà)一次函數(shù)的圖象時(shí),只要先描出兩點(diǎn),再連成直線(xiàn),就可以了.”由此可知:滿(mǎn)足函數(shù)關(guān)系式的有序?qū)崝?shù)對(duì)所對(duì)應(yīng)的點(diǎn),一定在這個(gè)函數(shù)的圖象上;反之,函數(shù)圖象上的點(diǎn)的坐標(biāo),一定滿(mǎn)足這個(gè)函數(shù)的關(guān)系式.另外,已知直線(xiàn)上兩點(diǎn)的坐標(biāo),便可求出這條直線(xiàn)所對(duì)應(yīng)的一次函數(shù)的解析式.
問(wèn)題1:已知點(diǎn)A(m,1)在直線(xiàn)y=2x-1上,求m的方法是:
 
,∴m=
 
;已知點(diǎn)B(-2,n)在直線(xiàn)y=2x-1上,求n的方法是:
 
,∴n=
 
;
問(wèn)題2:已知某個(gè)一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)P(3,5)和Q(-4,-9),求這個(gè)一次函數(shù)的解析式時(shí),一般先
 
,再由已知條件可得
 
.解得:
 
.∴滿(mǎn)足已知條件的一次函數(shù)的解析式為:
 
.這個(gè)一次函數(shù)的圖象與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)為:
 
,在右側(cè)給定的平面直角坐標(biāo)系中,描出這兩個(gè)點(diǎn),并畫(huà)出這個(gè)函數(shù)的圖象.像解決問(wèn)題2這樣,
 
的方法,叫做待定系數(shù)法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線(xiàn)AB和直線(xiàn)CD被直線(xiàn)GH所截,交點(diǎn)分別為E、F點(diǎn),且AB∥CD.
(1)若ME是∠AEF的平分線(xiàn),F(xiàn)N是∠EFD的平分線(xiàn),則EM與FN平行嗎?若平行,試說(shuō)明理由.
(2)若EK是∠BEF的平分線(xiàn),則EK和FN垂直嗎?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在下圖中,已知直線(xiàn)AB和直線(xiàn)CD被直線(xiàn)GH所截,交點(diǎn)分別為E、F點(diǎn),∠AEF=∠EFD.
(1)寫(xiě)出AB∥CD的根據(jù);
(2)若ME是∠AEF的平分線(xiàn),F(xiàn)N是∠EFD的平分線(xiàn),則EM與FN平行嗎?若平行,試寫(xiě)出根據(jù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:1999年河北省中考數(shù)學(xué)試卷 題型:解答題

(1999•河北)九年義務(wù)教育三年制初級(jí)中學(xué)教科書(shū)代數(shù)第三冊(cè)中,有以下幾段文字:“對(duì)于坐標(biāo)平面內(nèi)任意一點(diǎn)M,都有唯一的一對(duì)有序?qū)崝?shù)(x,y)和它對(duì)應(yīng);對(duì)于任意一對(duì)有序?qū)崝?shù)(x,y),在坐標(biāo)平面內(nèi)都有唯一的一點(diǎn)M和它對(duì)應(yīng),也就是說(shuō),坐標(biāo)平面內(nèi)的點(diǎn)與有序?qū)崝?shù)對(duì)是一一對(duì)應(yīng)的.”“一般地,對(duì)于一個(gè)函數(shù),如果把自變量x與函數(shù)y的每對(duì)對(duì)應(yīng)值分別作為點(diǎn)的橫坐標(biāo)與縱坐標(biāo),在坐標(biāo)平面內(nèi)描出相應(yīng)的點(diǎn),這些點(diǎn)所組成的圖形,就是這個(gè)函數(shù)的圖象.”“實(shí)際上,所有一次函數(shù)的圖象都是一條直線(xiàn).”“因?yàn)閮牲c(diǎn)確定一條直線(xiàn),所以畫(huà)一次函數(shù)的圖象時(shí),只要先描出兩點(diǎn),再連成直線(xiàn),就可以了.”由此可知:滿(mǎn)足函數(shù)關(guān)系式的有序?qū)崝?shù)對(duì)所對(duì)應(yīng)的點(diǎn),一定在這個(gè)函數(shù)的圖象上;反之,函數(shù)圖象上的點(diǎn)的坐標(biāo),一定滿(mǎn)足這個(gè)函數(shù)的關(guān)系式.另外,已知直線(xiàn)上兩點(diǎn)的坐標(biāo),便可求出這條直線(xiàn)所對(duì)應(yīng)的一次函數(shù)的解析式.
問(wèn)題1:已知點(diǎn)A(m,1)在直線(xiàn)y=2x-1上,求m的方法是:    ,∴m=    ;已知點(diǎn)B(-2,n)在直線(xiàn)y=2x-1上,求n的方法是:    ,∴n=   
問(wèn)題2:已知某個(gè)一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)P(3,5)和Q(-4,-9),求這個(gè)一次函數(shù)的解析式時(shí),一般先    ,再由已知條件可得    .解得:    .∴滿(mǎn)足已知條件的一次函數(shù)的解析式為:    .這個(gè)一次函數(shù)的圖象與兩坐標(biāo)軸的交點(diǎn)坐標(biāo)為:    ,在右側(cè)給定的平面直角坐標(biāo)系中,描出這兩個(gè)點(diǎn),并畫(huà)出這個(gè)函數(shù)的圖象.像解決問(wèn)題2這樣,    的方法,叫做待定系數(shù)法.

查看答案和解析>>

同步練習(xí)冊(cè)答案