(2007•樂(lè)山)如圖,把矩形紙條ABCD沿EF,GH同時(shí)折疊,B,C兩點(diǎn)恰好落在AD邊的P點(diǎn)處,若∠FPH=90°,PF=8,PH=6,則矩形ABCD的邊BC長(zhǎng)為( )

A.20
B.22
C.24
D.30
【答案】分析:利用勾股定理易得FH的長(zhǎng)度,那么BC的長(zhǎng)度=PF+FH+HC.
解答:解:Rt△PHF中,有FH=10,則矩形ABCD的邊BC長(zhǎng)為PF+FH+HC=8+10+6=24,故選C.
點(diǎn)評(píng):本題通過(guò)折疊變換考查學(xué)生的邏輯思維能力,解決此類問(wèn)題,應(yīng)結(jié)合題意,最好實(shí)際操作圖形的折疊,易于找到圖形間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2007年全國(guó)中考數(shù)學(xué)試題匯編《二次函數(shù)》(08)(解析版) 題型:解答題

(2007•樂(lè)山)如圖,拋物線y=x2+bx+c(b≤0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A的坐標(biāo)為(-2,0);直線x=1與拋物線交于點(diǎn)E,與x軸交于點(diǎn)F,且45°≤∠FAE≤60度.
(1)用b表示點(diǎn)E的坐標(biāo);
(2)求實(shí)數(shù)b的取值范圍;
(3)請(qǐng)問(wèn)△BCE的面積是否有最大值?若有,求出這個(gè)最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年四川省南充高中高一新生入學(xué)考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•樂(lè)山)如圖,拋物線y=x2+bx+c(b≤0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A的坐標(biāo)為(-2,0);直線x=1與拋物線交于點(diǎn)E,與x軸交于點(diǎn)F,且45°≤∠FAE≤60度.
(1)用b表示點(diǎn)E的坐標(biāo);
(2)求實(shí)數(shù)b的取值范圍;
(3)請(qǐng)問(wèn)△BCE的面積是否有最大值?若有,求出這個(gè)最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年四川省樂(lè)山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•樂(lè)山)如圖,拋物線y=x2+bx+c(b≤0)的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)A的坐標(biāo)為(-2,0);直線x=1與拋物線交于點(diǎn)E,與x軸交于點(diǎn)F,且45°≤∠FAE≤60度.
(1)用b表示點(diǎn)E的坐標(biāo);
(2)求實(shí)數(shù)b的取值范圍;
(3)請(qǐng)問(wèn)△BCE的面積是否有最大值?若有,求出這個(gè)最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年福建省龍巖市龍巖中學(xué)中考數(shù)學(xué)模擬(2)(解析版) 題型:填空題

(2007•樂(lè)山)如圖,半圓的直徑AB=10,P為AB上一點(diǎn),點(diǎn)C,D為半圓的三等分點(diǎn),則陰影部分的面積等于   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2007年四川省樂(lè)山市中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•樂(lè)山)如圖,半圓的直徑AB=10,P為AB上一點(diǎn),點(diǎn)C,D為半圓的三等分點(diǎn),則陰影部分的面積等于   

查看答案和解析>>

同步練習(xí)冊(cè)答案