(本小題滿分8分)
如圖所示,小吳和小黃在玩轉(zhuǎn)盤游戲,準(zhǔn)備了兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤甲、乙,每個轉(zhuǎn)盤被分成面積相等的幾個扇形區(qū)域,并在每個扇形區(qū)域內(nèi)標(biāo)上數(shù)字,游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動后,指針?biāo)干刃螀^(qū)域內(nèi)的數(shù)字之和為4,5或6時,則小吳勝;否則小黃勝。(如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一扇形區(qū)域為止)

(1)這個游戲規(guī)則對雙方公平嗎?說說你的理由;
(2)請你設(shè)計一個對雙方都公平的游戲規(guī)則。

(1)不公平
(2)解析:
解:列表或畫樹狀圖正確,
 轉(zhuǎn)盤甲
轉(zhuǎn)盤乙
1
2
3
4
5
1
(1,1)和為2
(2,1)和為3
(3,1)和為4
(4,1)和為5
(5,1)和為6
2
(1,2)和為3
(2,2)和為4
(3,2)和為5
(4,2)和為6
(5,2)和為7
3
(1,3)和為4
(2,3)和為5
(3,3)和為6
(4,3)和為7
(5,3)和為8
4
(1,4)和為5
(2,4)和為6
(3,4)和為7
(4,4)和為8
(5,4)和為9
 

(1)數(shù)字之和一共有20種情況,和為4,5或6的共有11種情況,
∵P(小吳勝)=>P(小黃勝)=,
∴這個游戲不公平;
(2)新的游戲規(guī)則:和為奇數(shù)小吳勝,和為偶數(shù)小黃勝.
理由:數(shù)字和一共有20種情況,和為偶數(shù)、奇數(shù)的各10種情況,
∴P(小吳勝)=P(小黃勝)=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分7分)

如圖,已知拋物線y1=-x2+bx+c經(jīng)過A(1,0),B(0,-2)兩點,頂點為D.

1.(1)求拋物線y1 的解析式;

2.(2)將△AOB繞點A逆時針旋轉(zhuǎn)90°后,得到△AO′ B′ ,將拋物線y1沿對稱軸平移后經(jīng)過點B′ ,寫出平移后所得的拋物線y2 的解析式;

3.(3)設(shè)(2)的拋物線y2軸的交點為B1,頂點為D1,若點M在拋物線y2上,且滿足△MBB1的面積是△MDD1面積的2倍,求點M的坐標(biāo).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分6分)

如圖,在8×11的方格紙中,每個小正方形的邊長均為1,△ABC的頂點均在小正方形的頂點處.

1.(1)畫出△ABC繞點A順時針方向旋轉(zhuǎn)90°得到的△;

2.(2)求點B運動到點B′所經(jīng)過的路徑的長.    

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(本小題滿分14分)

如圖1,拋物線y軸交于點AE(0,b)為y軸上一動點,過點E的直線與拋物線交于點B、C.

 

 

 

 

 

 

 


1.(1)求點A的坐標(biāo);

2.(2)當(dāng)b=0時(如圖2),求的面積。

3.(3)當(dāng)時,的面積大小關(guān)系如何?為什么?

4.(4)是否存在這樣的b,使得是以BC為斜邊的直角三角形,若存在,求出b;若不存在,說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011年江蘇省常州實驗初級中學(xué)九年級第二學(xué)期模擬考試數(shù)學(xué)卷 題型:解答題

(本小題滿分8分)如圖所示的矩形包書紙中,虛線是折痕,陰影是裁剪掉的部分,四個角均為大小相同的正方形,正方形的邊長為折疊進去的寬度.

【小題1】(1)設(shè)課本的長為a cm,寬為b cm,厚為c cm,如果按如圖所示的包書方式,將封面和封底 各折進去3cm,用含a,b,c的代數(shù)式,分別表示滿足要求的矩形包書紙的長與寬;
【小題2】(2)現(xiàn)有一本長為19cm,寬為16cm,厚為6cm的字典,你能用一張長為43cm,寬為26cm的矩形紙包好這本字典,并使折疊進去的寬度不小于3cm嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年河北省石家莊市42中學(xué)九年級第一次模擬考試數(shù)學(xué)卷 題型:解答題

(本小題滿分9分)
如圖,兩根鐵棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的長度是它的,另一根露出水面的長度是它的.兩根鐵棒長度之和為55 cm.
(1)根據(jù)題意,甲、乙兩個同學(xué)分別列出了尚不完整的方程(組)如下:
甲:                乙:   =55
根據(jù)甲、乙兩名同學(xué)所列的方程(組),請你分別指出未知數(shù)x,y表示的意義,然后在橫線上補全甲、乙兩名同學(xué)所列的方程(組):
甲:x表示                   ,y表示                   ;
乙:x表示                     
(2)求此時木桶中水的深度多少cm?(寫出完整的解答過程)

查看答案和解析>>

同步練習(xí)冊答案