大拇指與小拇指盡量張開時,兩指尖的距離稱為指距.某項研究表明,一般情況下人的身高h是指距d的一次函數(shù).下表是測得的指距與身高的幾組數(shù)據(jù):

(1)求h與d之間的函數(shù)關(guān)系式;

(2)某人身高為196 cm,一般情況下他的指距應(yīng)是多少?

答案:
解析:

  分析:根據(jù)h是d的一次函數(shù),可設(shè)h與d之間的函數(shù)關(guān)系式為h=kd+b,然后從表格中選取兩對相對簡單的對應(yīng)值代入h=kd+b中,求得k、b的值,即可得到函數(shù)關(guān)系式.

  解:設(shè)h與d之間的函數(shù)關(guān)系式為h=kd+b,

  根據(jù)表格信息,得

  解方程組,得

  所以,h與d之間的函數(shù)關(guān)系式為h=9d-20.

  (2)當(dāng)h=196 cm時,196=9d-20,解得d=24.

  所以,某人的身高為196 cm時,他的指距應(yīng)為24 cm.

  點評:求出一次函數(shù)的解析式后可以將原題中的已知條件代入解析式進行檢驗,防止在解方程組時出錯.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,大拇指與小拇指盡量張開時,兩指尖的距離稱為指距.根據(jù)最近人體構(gòu)造學(xué)的研究成果表明,一般情況下人的身高h是指距d的一次函數(shù).下表是測得的指距與身高的一組數(shù)據(jù):
指距d(cm) 20 21 22 23
身高h(cm) 160 169 178 187
根據(jù)上表解決下面這個實際問題:姚明的身高是226厘米,他的指距為( 。
A、26.8厘米
B、26.9厘米
C、27.5厘米
D、27.3厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,大拇指與小拇指盡量張開時,兩指尖的距離稱為指距.某項研究表明,一般情況下人的身高h是指距d的一次函數(shù).下表是測得的指距與身高的一組數(shù)據(jù):
指距d(cm) 20 21 22 23
身高h(cm) 160 169 178 187
(1)求出h與d之間的函數(shù)關(guān)系式;(不要求寫出自變量d的取值范圍)
(2)某人身高為196cm,一般情況下他的指距應(yīng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,大拇指與小拇指盡量張開時,2指尖的距離稱為指矩.某項研究表明,一般情況下人的身高h與指距d存在一定關(guān)系.下表是測得的指距與身高的一組數(shù)據(jù):
精英家教網(wǎng)
寫出h與d之間的關(guān)系式為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,大拇指與小拇指盡量張開時,兩指尖的距離稱為指距.通過實驗觀察發(fā)現(xiàn),一般情況下人的身高h與指距d兩個變量的各對應(yīng)值如表:
 指距d(cm)  20  21  22  23
 身高h(cm)  160  169  178  187
(1)判斷變量h,d是否近似地滿足一次函數(shù)關(guān)系?如果滿足,請求出h關(guān)于d的函數(shù)關(guān)系式;若不滿足,說明理由;
(2)某人身高為196cm,一般情況下他的指距應(yīng)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年海南省中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:解答題

如圖,大拇指與小拇指盡量張開時,兩指尖的距離稱為指距.某項研究表明,一般情況下人的身高h是指距d的一次函數(shù).下表是測得的指距與身高的一組數(shù)據(jù):
指距d(cm)20212223
身高h(cm)160169178187
(1)求出h與d之間的函數(shù)關(guān)系式;(不要求寫出自變量d的取值范圍)
(2)某人身高為196cm,一般情況下他的指距應(yīng)是多少?

查看答案和解析>>

同步練習(xí)冊答案