【題目】如圖,△ABC中,BA=BC,BD是三角形的角平分線,DE∥BC交AB于E,下列結(jié)論:①∠1=∠3;②DE= AB;③S△ADE= S△ABC . 正確的有( )

A.0個
B.1個
C.2個
D.3個

【答案】D
【解析】∵BA=BC,BD平分∠ABC,

∴∠1=∠2,BD⊥AC,且AD=CD,

∵DE∥BC,

∴∠2=∠3,△ADE∽△ACB,

∴∠1=∠3,故①正確;

,即DE= BC,故②正確;

由△ADE∽△ACB,且 = 可得 =( 2= ,

即S△ADE= S△ABC,故③正確;

所以答案是:D.


【考點精析】本題主要考查了相似三角形的應(yīng)用的相關(guān)知識點,需要掌握測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構(gòu)造相似三角形求解才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD、BEFG均為正方形,連接AG、CE.

(1)求證:AG=CE;

(2)求證:AG⊥CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等邊三角形,點E,F(xiàn)分別在BC,AC上,且BE=CF,連結(jié)AE與BF相交于點G.將△ABC沿AB邊折疊得到△ABD,連結(jié)DG.延長EA到點H,使得AH=BG,連結(jié)DH.

(1)求證:四邊形DBCA是菱形.
(2)若菱形DBCA的面積為8 , ,求△DGH的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖象中所反應(yīng)的過程是:張強從家跑步去體育場,在那里鍛煉了一陣后,又去早餐店吃早餐,然后散步走回家,其中x表示時間,y表示張強離家的距離,根據(jù)圖象提供的信息,以下四個說法錯誤的是(  )

A. 體育場離張強家2.5千米 B. 張強在體育場鍛煉了15分鐘

C. 體育場離早餐店4千米 D. 張強從早餐店回家的平均速度是千米/小時

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC和△A'B'C'關(guān)于直線m對稱.

(1)結(jié)合圖形指出對稱點;

(2)若連接AA',直線m與線段AA'有什么關(guān)系?

(3)BC與B'C'的交點,AB與A'B'的交點分別與直線m有怎樣的關(guān)系?若延長AC與A'C',其交點與直線m有怎樣的關(guān)系?你發(fā)現(xiàn)了什么規(guī)律?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,三角形DEF是三角形ABC平移所得,觀察圖形:(1)點A的對應(yīng)點是點 ,點B的對應(yīng)點是點 ,點C的對應(yīng)點是點 ;(2)線段AD,BE,CF叫做對應(yīng)點間的連線,這三條線段之間有什么關(guān)系呢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑OA的長為2,點B是⊙O上的動點,以AB為半徑的⊙A與線段OB相交于點C,AC的延長線與⊙O相交于點D.設(shè)線段AB的長為x,線段OC的長為y.
(1)求y關(guān)于x的函數(shù)解析式,并寫出定義域;
(2)當(dāng)四邊形ABDO是梯形時,求線段OC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O中,點A為 中點,BD為直徑,過A作AP∥BC交DB的延長線于點P.

(1)求證:PA是⊙O的切線;
(2)若 ,AB=6,求sin∠ABD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、c滿足|a﹣|++(c﹣42=0.

(1)求a、b、c的值;

(2)判斷以a、b、c為邊能否構(gòu)成三角形?若能構(gòu)成三角形,此三角形是什么形狀?并求出三角形的面積;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案