【題目】二次函數(shù)的圖象如圖所示,對稱軸是直線.下列結(jié)論:①;②;③;④(為實數(shù)).其中結(jié)論正確的個數(shù)為( )
A.1個B.2個C.3個D.4個
【答案】C
【解析】
①由拋物線開口方向得到,對稱軸在軸右側(cè),得到與異號,又拋物線與軸正半軸相交,得到,可得出,選項①正確;
②把代入中得,所以②正確;
③由時對應(yīng)的函數(shù)值,可得出,得到,由,,,得到,選項③正確;
④由對稱軸為直線,即時,有最小值,可得結(jié)論,即可得到④正確.
解:①∵拋物線開口向上,∴,
∵拋物線的對稱軸在軸右側(cè),∴,
∵拋物線與軸交于負半軸,
∴,
∴,①錯誤;
②當(dāng)時,,∴,
∵,∴,
把代入中得,所以②正確;
③當(dāng)時,,∴,
∴,
∵,,,
∴,即,所以③正確;
④∵拋物線的對稱軸為直線,
∴時,函數(shù)的最小值為,
∴,
即,所以④正確.
故選C.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板Rt△ABD與Rt△ACB(其中∠ABD=∠ACB=90°,∠D=60°,∠ABC=45°)如圖擺放,Rt△ABD中∠D所對的直角邊與Rt△ACB的斜邊恰好重合.以AB為直徑的圓經(jīng)過點C,且與AD相交于點E,連接EB,連接CE并延長交BD于F.
(1)求證:EF平分∠BED;
(2)求△BEF與△DEF的面積的比值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥公司有A倉、B倉兩個原材料倉庫和甲、乙兩個加工廠,其中A合、B倉共原材料22000噸,從A倉、B倉運往甲加工廠、乙加工廠的運費價如下表:
若將A倉的原材全部運往乙加T所需的費用與B倉的原材料全部運往甲加廠所需費用相同,
(1)A倉、B倉各有原材料多少噸?
(2)若甲加工廠需要從A、B兩倉調(diào)運9000噸原材料,乙加工廠需要從A、B兩倉調(diào)運13000原材料,且從A倉運送到甲加工廠的原材料最多9000噸,請問醫(yī)藥公司怎么調(diào)運可使總運費最少?求出最少運費.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表中給出了變量x與ax2,ax2+bx+c之間的部分對應(yīng)值(表格中的符號“…”表示該項數(shù)據(jù)已經(jīng)丟失)
x | -1 | 0 | 1 |
ax | … | … | 1 |
ax+ bx + c | 7 | 2 | … |
(1)寫出這條拋物線的開口方向,頂點D的坐標(biāo);并說明它的變化情況;
(2)拋物線的頂點為D,與y軸的交點為A,點M是拋物線對稱軸上的一點,直線AM交對稱軸右側(cè)的拋物線于點B,當(dāng)△ADM與△BDM的面積比為2:3時,求點B的坐標(biāo):
(3)在(2)的條件下,設(shè)線段BD交x軸于點C,試寫出∠BAD與∠DCO的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著經(jīng)濟的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注,某校學(xué)生會為了解節(jié)能減排、垃圾分類知識
的普及情況,隨機調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,
并將檢查結(jié)果繪制成下面兩個統(tǒng)計圖.
(1)本次調(diào)查的學(xué)生共有__________人,估計該校1200 名學(xué)生中“不了解”的人數(shù)是__________人.
(2)“非常了解”的4 人有兩名男生, 兩名女生,若從中隨機抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于C點,OA=2,OC=6,連接AC和BC.
(1)求拋物線的解析式;
(2)點D在拋物線的對稱軸上,當(dāng)△ACD的周長最小時,點D的坐標(biāo)為 .
(3)點E是第四象限內(nèi)拋物線上的動點,連接CE和BE.求△BCE面積的最大值及此時點E的坐標(biāo);
(4)若點M是y軸上的動點,在坐標(biāo)平面內(nèi)是否存在點N,使以點A、C、M、N為頂點的四邊形是菱形?若存在,請直接寫出點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點A的坐標(biāo)是(﹣1,0),點B的坐標(biāo)是(0,4),C為OB上任意一點,將△ABC繞點B逆時針旋轉(zhuǎn)90°后得到△A′B′C′.若反比例函數(shù)y=的圖象恰好經(jīng)過A′B的中點D,則k=____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定,中小學(xué)生每天在校體育活動時間不低于1小時,今年受“新冠肺炎”疫情的影響,為落實教育部“停課不停學(xué)”的要求,我市中學(xué)生進行居家線上學(xué)習(xí),為保證廣大學(xué)生的身心健康,有關(guān)部門就“你每天線上學(xué)習(xí)時在室內(nèi)或室外安全區(qū)域體育鍛煉時間是多少”的問題在某校開展了電話調(diào)查,隨機抽查了部分學(xué)生,再根據(jù)鍛煉時間t(小時)進行分組(A組:t<0.5,B組:0.5≤t<1,C組:1≤t<1.5,D組:t≥1.5),繪制成如圖兩幅不完整統(tǒng)計圖,請根據(jù)圖中信息回答問題:
(1)此次抽查的學(xué)生數(shù)為 人,并補全條形統(tǒng)計圖;
(2)計算扇形統(tǒng)計圖中A組部分所對應(yīng)的扇形圓心角度數(shù);
(3)若當(dāng)天該校進行居家線上學(xué)習(xí)的學(xué)生數(shù)為1300人,請估計在當(dāng)天達到國家規(guī)定體育活動時間的學(xué)生有多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的弦,點C為⊙O外一點,CO⊥OA,交AB于點P,連接BC,BC=PC.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為3,OP=1,求PC的長.
(3)在(2)的條件下,求BP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com