精英家教網 > 初中數學 > 題目詳情
如圖,已知平行四邊形ABCD中,P是對角線BD上的一點,過P點作MN∥AD,EF∥CD,分別精英家教網交AB、CD、AD、BC于M、N、E、F,設a=PM•PE,b=PN•PF.
(1)請判斷a與b的大小關系,并說明理由;
(2)當
BP
PD
=2
時,求
S平行四邊形PEAM
S△ABD
的值.
分析:(1)根據AD∥BC,可求出△PDE∽△PBF,因此PD:PB=PE:PF.同理可在相似三角形△PDN和△PBM中,求得PD:PB=PN:PM,兩個比例關系式的等值替換,即可求出PM•PE=PN•FP,即a=b;
(2)根據PM∥AD,可求出△BPM∽△ABD,可得出△PMB和△ABD的面積比;同理可求出△PED和△ABD的面積比.由于四邊形AMPE的面積為△ABD、△PMB、△PED的面積差,由此可求出平行四邊形PEAM與△ABD的面積比.
解答:解:(1)a=b
理由:∵BC∥AD
∴△PDE∽△PBF
PE
PF
=
PD
PB

∵AB∥CD
∴△PDN∽△PBM
PN
PM
=
PD
PB

PE
PF
=
PN
PM

∴PM•PE=PN•PF
∴a=b;

(2)∵
BP
PD
=2
S△PBF
S△PDE
=
4
1
,
∵MN∥AD,EF∥CD,
∴四邊形BFPM是平行四邊形
∴△PBF≌△BPM
S△BPM
S△PDE
=
S△PBF
S△PDE
=
4
1

∴S△BPM=4S△PDE
BP
PD
=2精英家教網
BP
BD
=
2
3

S△BPM
S△BDA
=
4
9
,
∴S△BPM=
4
9
S△BDA
∵S△PDE=
1
4
S△BPM=
1
9
S△BDA,
∴S四邊形PEAM=
4
9
S△BDA
S平行四邊形PEAM
S△ABD
=
4
9
點評:本題主要考查了平行四邊形的性質、相似三角形的判定和性質等知識.綜合性強,難度較大.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖,已知平行四邊形DEFG與正方形ABCD有一個公共頂點D,G在CB或其延長線上,A在EF所在直線上,又二次函數y=(m-1)x2-(m-2)x-1(m>0)與x軸的兩個交點P、Q的橫坐標分別為x1,x2,且x1>0,x2>0,正方形AB精英家教網CD的邊長a等于點P,Q間的距離.
(1)求m的取值范圍;
(2)求a和四邊形DEFG的面積S;
(3)若DEFG的一組鄰邊長分別等于x1,x2,并設
CGCB
=k
,求sin∠E和k.
((2),(3)的結果都用含m的代數式表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,已知平行四邊形ABCD的對角線AC,BD相交于點O,BD繞點O順時針旋轉交AB,DC于E,F.
(1)證明:四邊形BFDE是平行四邊形;
(2)BD繞點O順時針旋轉
 
度時,平行四邊形BFDE為菱形?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

23、如圖,已知平行四邊形ABCD.
(1)用直尺和圓規(guī)作出么ABC的平分線BE,交AD的延長線于點E,交DC于點F(保留作圖痕跡,不寫作法);
(2)求證:△ABE是等腰三角形;
(3)在(1)中所得圖形中,除△ABE外,請你寫出其他的等腰三角形.(不要求證明)

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知平行四邊形ABCD,作DE⊥AB,垂足為E,把三角形AED沿AB方向平移AB長個單位長度.
(1)作出平移后的圖形;
(2)經過這樣的平移后,原來的圖形變成了什么圖形?
(3)這兩個圖形的面積相等嗎?只需給出答案,不必說明理由.

查看答案和解析>>

同步練習冊答案