線段OA=2(O為坐標(biāo)原點),點A在x軸的正半軸上.現(xiàn)將線段OA繞點O逆時針旋轉(zhuǎn)α度,且0<α<90.
①當(dāng)α等于
30°或60°
30°或60°
時,點A落在雙曲線y=
3
x
上;
②在旋轉(zhuǎn)過程中若點A能落在雙曲線y=
k
x
上,則k的取值范圍是
0<k≤2
0<k≤2
分析:①求出A的橫坐標(biāo)和縱坐標(biāo),再根據(jù)三角函數(shù)求出角的度數(shù);
②畫出圖象,求出k的最大值,即可得出k的取值范圍.
解答:解:①∵點A落在雙曲線y=
3
x
上,
∴設(shè)A點橫坐標(biāo)為x,縱坐標(biāo)為
3
x

根據(jù)勾股定理得,x2+(
3
x
2=4,
解得,x=1或x=
3

則A點坐標(biāo)為(1,
3
)或(
3
,1).
∴sinA=
3
2
或sinA=
1
2

∴∠A=60°或∠A=30°;
②如圖當(dāng)OA為第一象限的角平分線的時候,
A點坐標(biāo)為(
2
,
2
).
k=
2
×
2
=2;
則k的取值范圍是0<k≤2.
點評:本題考查了反比例函數(shù)圖象上點的坐標(biāo)特征,熟悉反比例函數(shù)的性質(zhì)及三角函數(shù)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•寶山區(qū)一模)在平面直角坐標(biāo)系中,拋物線過原點O,且與x軸交于另一點A(A在O右側(cè)),頂點為B.艾思軻同學(xué)用一把寬3cm的矩形直尺對拋物線進(jìn)行如下測量:(1)量得OA=3cm,(2)當(dāng)把直尺的左邊與拋物線的對稱抽重合,使得直尺左下端點與拋物線的頂點重合時(如圖1),測得拋物線與直尺右邊的交點C的刻度讀數(shù)為4.5cm.
艾思軻同學(xué)將A的坐標(biāo)記作(3,0),然后利用上述結(jié)論嘗試完成下列各題:
(1)寫出拋物線的對稱軸;
(2)求出該拋物線的解析式;
(3)探究拋物線的對稱軸上是否存在使△ACD周長最小的點D;
(4)然后又將圖中的直尺(足夠長)沿水平方向向右平移到點A的右邊(如圖2),直尺的兩邊交x軸于點H,G,交拋物線于E,F(xiàn),探究梯形EFGH的面積S與線段EF的長度是否存在函數(shù)關(guān)系.
同學(xué):如上述(3)(4)結(jié)論存在,請你幫艾思軻同學(xué)一起完成,如上述(3)(4)結(jié)論不存在,請你告訴艾思軻同學(xué)結(jié)論不存在的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (m≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與x軸交于C點,點B的坐  標(biāo)為(6,n).線段OA=5,E為x軸上一點,且sin ∠AOE=

1.求該反比例函數(shù)和一次函數(shù)的解析式

2.求△AOC的面積

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (m≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與x軸交于C點,點B的坐 標(biāo)為(6,n).線段OA=5,E為x軸上一點,且sin ∠AOE=

【小題1】求該反比例函數(shù)和一次函數(shù)的解析式
【小題2】求△AOC的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆安徽滁州八年級下期末模擬數(shù)學(xué)試卷(滬科版)(解析版) 題型:解答題

已知:如圖1,平面直角坐標(biāo)系中,四邊形OABC是矩形,點A,C的坐

標(biāo)分別為(6,0),(0,2).點D是線段BC上的一個動點(點D與點B,C不重合),過點D作直線=-交折線O-A-B于點E.

(1)在點D運動的過程中,若△ODE的面積為S,求S與的函數(shù)關(guān)系式,并寫出自變量的取值范圍;

(2)如圖2,當(dāng)點E在線段OA上時,矩形OABC關(guān)于直線DE對稱的圖形為矩形O′A′B′C′,C′B′分別交CB,OA于點D,M,O′A′分別交CB,OA于點N,E.求證:四邊形DMEN是菱形;

(3)問題(2)中的四邊形DMEN中,ME的長為____________.

    

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆湖南省八年級反比例函數(shù)測試數(shù)學(xué)試卷(解析版) 題型:填空題

如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y= (m≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與x軸交于C點,點B的坐  標(biāo)為(6,n).線段OA=5,E為x軸上一點,且sin ∠AOE=

1.求該反比例函數(shù)和一次函數(shù)的解析式

2.求△AOC的面積

 

查看答案和解析>>

同步練習(xí)冊答案