如圖,AD是△ABC的高,AE是△ABC的外接圓直徑.
求證:AB•AC=AE•AD.

【答案】分析:連接CE,兩個對應角相等可以證明三角形相似,再根據(jù)相似三角形的性質(zhì)得出比例證明.
解答:解:連接CE;
由圓周角定理可知,∠B=∠E,
∵∠ADB=∠ACE=90°,∠B=∠E,
∴△ADB∽△ACE.
∴AB:AE=AD:AC,AB•AC=AE•AD.
點評:乘積的形式通?梢赞D(zhuǎn)化成比例的形式,通過證明三角形相似得出結(jié)論.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

14、如圖,AD是△ABC的高線,且AD=2,若將△ABC及其高線平移到△A′B′C′的位置,則A′D′和B′D′位置關(guān)系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC是角平分線,DE⊥AB于點E,DF⊥AC于點F,連接EF交AD于點G,則AD與EF的位置關(guān)系是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

16、已知:如圖,AD是△ABC的角平分線,且 AB:AC=3:2,則△ABD與△ACD的面積之比為
3:2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,AD是△ABC的邊BC上的中線,已知AB=5cm,AC=3cm.
(1)求△ABD與△ACD的周長之差.
(2)若AB邊上的高為2cm,求AC邊上的高.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,AD是△ABC的中線,CE是△ACD的中線,DF是△CDE的中線,如果△DEF的面積是2,那么△ABC的面積為( 。

查看答案和解析>>

同步練習冊答案