(2010•臺州)類比學(xué)習(xí):一動點沿著數(shù)軸向右平移3個單位,再向左平移2個單位,相當(dāng)于向右平移1個單位.用實數(shù)加法表示為3+(-2)=1.
若坐標(biāo)平面上的點作如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負,平移|a|個單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負,平移|b|個單位),則把有序數(shù)對{a,b}叫做這一平移的“平移量”;“平移量”{a,b}與“平移量”{c,d}的加法運算法則為{a,b}+{c,d}={a+c,b+d}.
解決問題:
(1)計算:{3,1}+{1,2};{1,2}+{3,1};
(2)①動點P從坐標(biāo)原點O出發(fā),先按照“平移量”{3,1}平移到A,再按照“平移量”
{1,2}平移到B;若先把動點P按照“平移量”{1,2}平移到C,再按照“平移量”
{3,1}平移,最后的位置還是點B嗎?在圖1中畫出四邊形OABC.
②證明四邊形OABC是平行四邊形.
(3)如圖2,一艘船從碼頭O出發(fā),先航行到湖心島碼頭P(2,3),再從碼頭P航行到碼頭Q(5,5),最后回到出發(fā)點O.請用“平移量”加法算式表示它的航行過程.

【答案】分析:(1)本題主要是類比學(xué)習(xí),所以關(guān)鍵是由給出的例題中找出解題規(guī)律,即前項加前項,后項加后項.
(2)根據(jù)題中給出的平移量找出各對應(yīng)點,描出各點,順次連接即可.
(3)根據(jù)題中的文字?jǐn)⑹隽谐鍪阶,根?jù)(1)中的規(guī)律計算即可.
解答:解:(1){3,1}+{1,2}={4,3};
{1,2}+{3,1}={4,3}.

(2)①畫圖
最后的位置仍是B.
②證明:由①知,A(3,1),B(4,3),C(1,2)
∴OC=AB==,
OA=BC==
∴四邊形OABC是平行四邊形.

(3)從O出發(fā),先向右平移2個單位,再向上平移3個單位,可知平移量為{2,3},
同理得到P到Q的平移量為{3,2},從Q到O的平移量為{-5,-5},故有
{2,3}+{3,2}+{-5,-5}={0,0}.
點評:本題是一道綜合題,比較有創(chuàng)新,讓學(xué)生在做題的同時又學(xué)到新知識,是一道好題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2011年廣東省茂名市化州市文樓鎮(zhèn)第一中學(xué)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2010•臺州)類比學(xué)習(xí):一動點沿著數(shù)軸向右平移3個單位,再向左平移2個單位,相當(dāng)于向右平移1個單位.用實數(shù)加法表示為3+(-2)=1.
若坐標(biāo)平面上的點作如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負,平移|a|個單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負,平移|b|個單位),則把有序數(shù)對{a,b}叫做這一平移的“平移量”;“平移量”{a,b}與“平移量”{c,d}的加法運算法則為{a,b}+{c,d}={a+c,b+d}.
解決問題:
(1)計算:{3,1}+{1,2};{1,2}+{3,1};
(2)①動點P從坐標(biāo)原點O出發(fā),先按照“平移量”{3,1}平移到A,再按照“平移量”
{1,2}平移到B;若先把動點P按照“平移量”{1,2}平移到C,再按照“平移量”
{3,1}平移,最后的位置還是點B嗎?在圖1中畫出四邊形OABC.
②證明四邊形OABC是平行四邊形.
(3)如圖2,一艘船從碼頭O出發(fā),先航行到湖心島碼頭P(2,3),再從碼頭P航行到碼頭Q(5,5),最后回到出發(fā)點O.請用“平移量”加法算式表示它的航行過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的平移》(01)(解析版) 題型:解答題

(2010•臺州)類比學(xué)習(xí):一動點沿著數(shù)軸向右平移3個單位,再向左平移2個單位,相當(dāng)于向右平移1個單位.用實數(shù)加法表示為3+(-2)=1.
若坐標(biāo)平面上的點作如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負,平移|a|個單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負,平移|b|個單位),則把有序數(shù)對{a,b}叫做這一平移的“平移量”;“平移量”{a,b}與“平移量”{c,d}的加法運算法則為{a,b}+{c,d}={a+c,b+d}.
解決問題:
(1)計算:{3,1}+{1,2};{1,2}+{3,1};
(2)①動點P從坐標(biāo)原點O出發(fā),先按照“平移量”{3,1}平移到A,再按照“平移量”
{1,2}平移到B;若先把動點P按照“平移量”{1,2}平移到C,再按照“平移量”
{3,1}平移,最后的位置還是點B嗎?在圖1中畫出四邊形OABC.
②證明四邊形OABC是平行四邊形.
(3)如圖2,一艘船從碼頭O出發(fā),先航行到湖心島碼頭P(2,3),再從碼頭P航行到碼頭Q(5,5),最后回到出發(fā)點O.請用“平移量”加法算式表示它的航行過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《四邊形》(08)(解析版) 題型:解答題

(2010•臺州)類比學(xué)習(xí):一動點沿著數(shù)軸向右平移3個單位,再向左平移2個單位,相當(dāng)于向右平移1個單位.用實數(shù)加法表示為3+(-2)=1.
若坐標(biāo)平面上的點作如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負,平移|a|個單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負,平移|b|個單位),則把有序數(shù)對{a,b}叫做這一平移的“平移量”;“平移量”{a,b}與“平移量”{c,d}的加法運算法則為{a,b}+{c,d}={a+c,b+d}.
解決問題:
(1)計算:{3,1}+{1,2};{1,2}+{3,1};
(2)①動點P從坐標(biāo)原點O出發(fā),先按照“平移量”{3,1}平移到A,再按照“平移量”
{1,2}平移到B;若先把動點P按照“平移量”{1,2}平移到C,再按照“平移量”
{3,1}平移,最后的位置還是點B嗎?在圖1中畫出四邊形OABC.
②證明四邊形OABC是平行四邊形.
(3)如圖2,一艘船從碼頭O出發(fā),先航行到湖心島碼頭P(2,3),再從碼頭P航行到碼頭Q(5,5),最后回到出發(fā)點O.請用“平移量”加法算式表示它的航行過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《三角形》(13)(解析版) 題型:解答題

(2010•臺州)類比學(xué)習(xí):一動點沿著數(shù)軸向右平移3個單位,再向左平移2個單位,相當(dāng)于向右平移1個單位.用實數(shù)加法表示為3+(-2)=1.
若坐標(biāo)平面上的點作如下平移:沿x軸方向平移的數(shù)量為a(向右為正,向左為負,平移|a|個單位),沿y軸方向平移的數(shù)量為b(向上為正,向下為負,平移|b|個單位),則把有序數(shù)對{a,b}叫做這一平移的“平移量”;“平移量”{a,b}與“平移量”{c,d}的加法運算法則為{a,b}+{c,d}={a+c,b+d}.
解決問題:
(1)計算:{3,1}+{1,2};{1,2}+{3,1};
(2)①動點P從坐標(biāo)原點O出發(fā),先按照“平移量”{3,1}平移到A,再按照“平移量”
{1,2}平移到B;若先把動點P按照“平移量”{1,2}平移到C,再按照“平移量”
{3,1}平移,最后的位置還是點B嗎?在圖1中畫出四邊形OABC.
②證明四邊形OABC是平行四邊形.
(3)如圖2,一艘船從碼頭O出發(fā),先航行到湖心島碼頭P(2,3),再從碼頭P航行到碼頭Q(5,5),最后回到出發(fā)點O.請用“平移量”加法算式表示它的航行過程.

查看答案和解析>>

同步練習(xí)冊答案