(1)觀察與發(fā)現(xiàn): 小明將三角形紙片ABC(AB>AC)沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖①);在第一次的折疊基礎(chǔ)上第二次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖②).小明認(rèn)為△AEF是等腰三角形,你同意嗎?請說明理由.
(2)實踐與運用: 將矩形紙片ABCD沿過點B的直線折疊,使點A落在BC邊上的點F處,折痕為BE(如圖③);再沿過點E的直線折疊,使點D落在BE上的點D'處,折痕為EG(如圖④);再展平紙片(如圖⑤).求圖⑤中∠α 的大。
解:(1)同意.如圖,設(shè)AD與EF交于點G.
由折疊知,AD平分∠BAC,所以∠BAD=∠CAD.
又由折疊知,∠AGE=∠DGE,∠AGE+∠DGE=180°,
所以∠AGE=∠AGF=90°,
所以∠AEF=∠AFE.
所以AE=AF, 即△AEF為等腰三角形.
(2)由折疊知,四邊形ABFE是正方形,∠AEB=45°,
所以∠BED=135度.
又由折疊知,∠BEG=∠DEG,
所以∠DEG=67.5度. 從而∠ α=90°﹣67.5°=22.5°.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

26、(1)觀察與發(fā)現(xiàn):
小明將三角形紙片ABC(AB>AC)沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖①);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖②).小明認(rèn)為△AEF是等腰三角形,你同意嗎?請說明理由.
(2)實踐與運用:
將矩形紙片ABCD沿過點B的直線折疊,使點A落在BC邊上的點F處,折痕為BE(如圖③);再沿過點E的直線折疊,使點D落在BE上的點D′處,折痕為EG(如圖④);再展平紙片(如圖⑤).求圖⑤中∠α的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、觀察與發(fā)現(xiàn):將矩形紙片AOCB折疊,使點C與點A重合,點B落在點B′處(如圖),折痕為EF.小明發(fā)現(xiàn)△AEF為等腰三角形,你同意嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)觀察與發(fā)現(xiàn):將矩形紙片AOCB折疊,使點C與點A重合,點B落在點B′處(如圖),折痕為EF、小明發(fā)現(xiàn)△AEF為等腰三角形,你同意嗎?請說明理由.
精英家教網(wǎng)
(2)實踐與應(yīng)用:以點O為坐標(biāo)原點,分別以矩形的邊OC、OA為x軸、y軸建立如圖所示的直角坐標(biāo)系,若頂點B的坐標(biāo)為(9,3),請求出折痕EF的長及EF所在直線的函數(shù)關(guān)系式.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)猜想、探究題:
(1)觀察與發(fā)現(xiàn)
小明將三角形紙片ABC(AB>AC)沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖①);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖②).你認(rèn)為△AEF是什么形狀的三角形?
(2)實踐與運用
將矩形紙片ABCD(AB<BC)沿過點B的直線折疊,使點A落在BC邊上的點F處,折痕為BE(如圖③);再沿過點E的直線折疊,使點D落在BE上的點D′處,折痕為EG(如圖④);再展平紙片(如圖⑤).
猜想△EBG的形狀,證明你的猜想,并求圖⑤中∠FEG的大小.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

觀察與發(fā)現(xiàn):
(1)小明將三角形紙片ABC(AB>AC)沿過點A的直線折疊,使得AC落在AB邊上,折痕為AD,展開紙片(如圖①);再次折疊該三角形紙片,使點A和點D重合,折痕為EF,展平紙片后得到△AEF(如圖②).你認(rèn)為△AEF是什么形狀的三角形?為什么?
精英家教網(wǎng)
實踐與運用:
如圖,將矩形紙片ABCD按如下順序進行折疊:對折、展平,得折痕EF(如圖①);沿GC折疊,使點B落在EF上的點B′處(如圖②);展平,得折痕GC(如圖③);沿GH折疊,使點C落在DH上的點C′處(如圖④);沿GC′折疊(如圖⑤);展平,得折痕GC′、GH(如圖⑥).
(2)在圖②中連接BB′,判斷△BCB′的形狀,請說明理由;
(3)圖⑥中的△GCC′是等邊三角形嗎?請說明理由.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊答案