19、如圖,△ABC的三邊AB、BC、CA長分別是20、30、40,其三條角平分線將△ABC分成三個三角形,則S△ABO:S△BCO:S△CAO等于
2:3:4
分析:由角平分線的性質可得,點O到三角形三邊的距離相等,即三個三角形的AB、BC、CA的高相等,利用面積公式即可求解.
解答:解:
過點O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,
∵O是三角形三條角平分線的交點,
∴OD=OE=OF,
∵AB=20,BC=30,AC=40,
∴S△ABO:S△BCO:S△CAO=2:3:4.
故答案為:2:3:4.
點評:此題主要考查角平分線的性質和三角形面積的求法,難度不大,作輔助線很關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC的三邊分別切⊙O于D,E,F(xiàn),若∠A=40°,則∠DEF=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•邢臺一模)(1)如圖,RT△ABC的三邊長分別為3、4、5,求△ABC內切圓的半徑;
(2)如圖,△ABC的三邊長分別為a、b、c,面積為S,其內切圓的半徑為r,試用a、b、c和S表示r;
(3)如圖,四邊形ABCD的周長為l,面積為S,其內切圓的半徑為r,試用l、s表示r;
(4)若一個n變形的周長為l,面積為S,其內切圓的半徑為r,直接寫出r、l和S的關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC的三邊AB、BC、AC的長分別為4,6,8,其三條角平分線將△ABC分成三個三角形,則S△OAB:S△OBC:S△OAC=
2:3:4
2:3:4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC的三邊長分別為AC=12,AB=15,BC=9.若將△ABC沿線段AD折疊,點C正好落在AB邊上的點E處.求線段CD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC的三邊長分別是6cm、8cm、10cm,現(xiàn)在分別取三邊的中點E、F、G,順次連接E、F、G,則△EFG的面積為
6 cm2
6 cm2

查看答案和解析>>

同步練習冊答案