已知:△ABC的兩邊AB、AC的長是關于x的一元二次方程x2-(2k+3)x+k2+3k+2=0的兩個實數(shù)根,第三邊BC的長為5.試問:k取何值時,△ABC是以BC為斜邊的直角三角形?
【答案】分析:△ABC是以BC為斜邊的直角三角形,即AB,AC的平方和是25,則一元二次方程x2-(2k+3)x+k2+3k+2=0的兩個實數(shù)根的平方和是25,根據(jù)韋達定理和勾股定理解出k的值,再把k的值代入原方程,檢查k是哪個值時,△ABC是以BC為斜邊的直角三角形則可.
解答:解:設邊AB=a,AC=b
∵a、b是方程x2-(2k+3)x+k2+3k+2=0的兩根
∴a+b=2k+3,a•b=k2+3k+2
又∵△ABC是以BC為斜邊的直角三角形,且BC=5
∴a2+b2=52,
即(a+b)2-2ab=52,
∴(2k+3)2-2(k2+3k+2)=25
∴k2+3k-10=0
∴k1=-5或k2=2
當k=-5時,方程為:x2+7x+12=0
解得:x1=-3,x2=-4(舍去)
當k=2時,方程為:x2-7x+12=0
解得:x1=3,x2=4
∴當k=2時,△ABC是以BC為斜邊的直角三角形.
點評:此題主要考查一元二次方程的根與系數(shù)的關系及勾股定理的應用.求出k的值后,一定要代入原方程進行檢驗.